Air–Sea Heat Exchanges Characteristic of a Prominent Midlatitude Oceanic Front in the South Indian Ocean as Simulated in a High-Resolution Coupled GCM

2009 ◽  
Vol 22 (24) ◽  
pp. 6515-6535 ◽  
Author(s):  
Masami Nonaka ◽  
Hisashi Nakamura ◽  
Bunmei Taguchi ◽  
Nobumasa Komori ◽  
Akira Kuwano-Yoshida ◽  
...  

Abstract An integration of a high-resolution coupled general circulation model whose ocean component is eddy permitting and thus able to reproduce a sharp gradient in sea surface temperature (SST) is analyzed to investigate air–sea heat exchanges characteristic of the midlatitude oceanic frontal zone. The focus of this paper is placed on a prominent SST front in the south Indian Ocean, which is collocated with the core of the Southern Hemisphere storm track. Time-mean distribution of sensible heat flux is characterized by a distinct cross-frontal contrast. It is upward and downward on the warmer and cooler flanks, respectively, of the SST front, acting to maintain the sharp gradient of surface air temperature (SAT) that is important for preconditioning the environment for the recurrent development of storms and thereby anchoring the storm track. Induced by cross-frontal advection of cold (warm) air associated with migratory atmospheric disturbances, the surface flux is highly variable with intermittent enhancement of the upward (downward) flux predominantly on the warmer (cooler) flank of the front. Indeed, several intermittent events of cold (warm) air advection, whose total duration accounts for only 21% (19%) of the entire analysis period, contribute to as much as 60% (44%) of the total amount of sensible heat flux during the analysis period on the warmer (cooler) flank. This antisymmetric behavior yields the sharp cross-frontal gradient in the time-mean flux. Since the flux intensity is strongly influenced by local magnitude of the SST–SAT difference that tends to increase with the SST gradient, the concentration of the flux variance to the frontal zone and cross-frontal contrasts in the mean and skewness of the flux all become stronger during the spinup of the SST front. Synoptically, the enhanced sensible heat flux near the SST front can restore SAT toward the underlying SST effectively with a time scale of a day, to maintain a frontal SAT gradient against the relaxing effect of atmospheric disturbances. The restoration effect of the differential surface heating at the SST front, augmented by the surface latent heating concentrated on the warm side of the front, represents a key process through which the atmospheric baroclinicity and ultimately the storm track are linked to the underlying ocean.

2012 ◽  
Vol 69 (5) ◽  
pp. 1617-1632 ◽  
Author(s):  
Bruno Deremble ◽  
Guillaume Lapeyre ◽  
Michael Ghil

Abstract To understand the atmospheric response to a midlatitude oceanic front, this paper uses a quasigeostrophic (QG) model with moist processes. A well-known, three-level QG model on the sphere has been modified to include such processes in an aquaplanet setting. Its response is analyzed in terms of the upper-level atmospheric jet for sea surface temperature (SST) fronts of different profiles and located at different latitudes. When the SST front is sufficiently strong, it tends to anchor the mean atmospheric jet, suggesting that the jet’s spatial location and pattern are mainly affected by the latitude of the SST front. Changes in the jet’s pattern are studied, focusing on surface sensible heat flux and on moisture effects through latent heat release. It is found that latent heat release due to moist processes is modified when the SST front is changed, and this is responsible for the meridional displacement of the jet. Moreover, both latent heat release and surface sensible heat flux contribute to the jet’s strengthening. These results highlight the role of SST fronts and moist processes in affecting the characteristics of the midlatitude jet stream and of its associated storm track, particularly their positions.


2010 ◽  
Vol 23 (7) ◽  
pp. 1793-1814 ◽  
Author(s):  
Takeaki Sampe ◽  
Hisashi Nakamura ◽  
Atsushi Goto ◽  
Wataru Ohfuchi

Abstract In a set of idealized “aquaplanet” experiments with an atmospheric general circulation model to which zonally uniform sea surface temperature (SST) is prescribed globally as the lower boundary condition, an assessment is made of the potential influence of the frontal SST gradient upon the formation of a storm track and an eddy-driven midlatitude polar front jet (PFJ), and on its robustness against changes in the intensity of a subtropical jet (STJ). In experiments with the frontal midlatitude SST gradient as that observed in the southwestern Indian Ocean, transient eddy activity in each of the winter and summer hemispheres is organized into a deep storm track along the SST front with an enhanced low-level baroclinic growth of eddies. In the winter hemisphere, another storm track forms just below the intense STJ core, but it is confined to the upper troposphere with no significant baroclinic eddy growth underneath. The near-surface westerlies are strongest near the midlatitude SST front as observed, consistent with westerly momentum transport associated with baroclinic eddy growth. The sharp poleward decline in the surface sensible heat flux across the SST frontal zone sustains strong near-surface baroclinicity against the relaxing effect by vigorous poleward eddy heat transport. Elimination of the midlatitude frontal SST gradient yields marked decreases in the activity of eddies and their transport of angular momentum into midlatitudes, in association with equatorward shifts of the PFJ-associated low-level westerlies and a subtropical high pressure belt, especially in the summer hemisphere. These impacts of the midlatitude frontal SST gradient are found to be robust against modest changes in the STJ intensity as observed in its interannual variability, suggesting the potential importance of midlatitude atmosphere–ocean interaction in shaping the tropospheric general circulation.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


1977 ◽  
Vol 11 (2) ◽  
pp. 147-154 ◽  
Author(s):  
R. L. Desjardins

Polar Record ◽  
2000 ◽  
Vol 36 (196) ◽  
pp. 3-18 ◽  
Author(s):  
P. Prosek ◽  
M. Janouch ◽  
K. Láska

AbstractThis article presents the results of measurements of the components of ground-surface energy balance (radiation balance, sensible heat flux, latent heat flux, and ground heat flux) taken during the 1994/95 summer season at Poland's Henryk Arctowski Station, King George Island, South Shetland Islands (62°09'42”S, 58°28'10”W). This was the first time that these complex measurements had been taken in the central part of the South Shetlands archipelago. The results are evaluated at the level of daily and seasonal fluctuations. The consequences of energy balance on the temperature conditions of the soil substrata are highlighted. The verification of the degree of influence of a subset of energy-balance components on soil temperature allowed analysis of the relationships among soil temperature, radiation balance, and sensible heat flux. This analysis leads to the conclusion that there is a rapid reaction of the soil temperature to the radiation balance and sensible heat flux to a depth of 5 cm. The boundary atmosphere and soil substrate represent the basic components of the ecotops of the Antarctic vegetation oasis, so these results are interpreted in pedological or botanical studies in the search for environmental influences on the vegetation.


2009 ◽  
Vol 149 (9) ◽  
pp. 1397-1402 ◽  
Author(s):  
F. Castellví ◽  
R.L. Snyder

Sign in / Sign up

Export Citation Format

Share Document