Estimates of Tropical Diabatic Heating Profiles: Commonalities and Uncertainties

2010 ◽  
Vol 23 (3) ◽  
pp. 542-558 ◽  
Author(s):  
Samson Hagos ◽  
Chidong Zhang ◽  
Wei-Kuo Tao ◽  
Steve Lang ◽  
Yukari N. Takayabu ◽  
...  

Abstract This study aims to evaluate the consistency and discrepancies in estimates of diabatic heating profiles associated with precipitation based on satellite observations and microphysics and those derived from the thermodynamics of the large-scale environment. It presents a survey of diabatic heating profile estimates from four Tropical Rainfall Measuring Mission (TRMM) products, four global reanalyses, and in situ sounding measurements from eight field campaigns at various tropical locations. Common in most of the estimates are the following: (i) bottom-heavy profiles, ubiquitous over the oceans, are associated with relatively low rain rates, while top-heavy profiles are generally associated with high rain rates; (ii) temporal variability of latent heating profiles is dominated by two modes, a deep mode with a peak in the upper troposphere and a shallow mode with a low-level peak; and (iii) the structure of the deep modes is almost the same in different estimates and different regions in the tropics. The primary uncertainty is in the amount of shallow heating over the tropical oceans, which differs substantially among the estimates.

2009 ◽  
Vol 22 (2) ◽  
pp. 414-428 ◽  
Author(s):  
Steven C. Chan ◽  
Sumant Nigam

Abstract Diabatic heating is diagnosed from the 40-yr ECMWF Re-Analysis (ERA-40) circulation as a residue in the thermodynamic equation. The heating distribution is compared with the heating structure diagnosed from NCEP and 15-yr ECMWF Re-Analysis (ERA-15) circulation and latent heating generated from Tropical Rainfall Measuring Mission (TRMM) observations using the convective–stratiform heating (CSH) algorithm. The ERA-40 residual heating in the tropics is found to be stronger than NCEP’s (and ERA-15), especially in July when its zonal–vertical average is twice as large. The bias is strongest over the Maritime Continent in January and over the eastern basins and Africa in July. Comparisons with precipitation indicate ERA-40 heating to be much more realistic over the eastern Pacific but excessive over the Maritime Continent, by at least 20% in January. Intercomparison of precipitation estimates from heating-profile integrals and station and satellite analyses reveals the TRMM CSH latent heating to be chronically weak by as much as a factor of 2! It is the low-side outlier among nine precipitation estimates in three of the four analyzed regions. No less worrisome is the inconsistency between the integral of the CSH latent heating profile in the tropics and the TRMM precipitation retrievals constraining the CSH algorithm (e.g., the 3A25 analysis). Confronting TRMM’s diagnosis of latent heating from local rainfall retrievals and local cumulus-model heating profiles with heating based on the large-scale assimilated circulation is a defining attribute of this study.


2009 ◽  
Vol 66 (12) ◽  
pp. 3621-3640 ◽  
Author(s):  
Chidong Zhang ◽  
Samson M. Hagos

Abstract Tropical diabatic heating profiles estimated using sounding data from eight field campaigns were diagnosed to document their common and prevailing structure and variability that are relevant to the large-scale circulation. The first two modes of a rotated empirical orthogonal function analysis—one deep, one shallow—explain 85% of the total variance of all data combined. These two modes were used to describe the heating evolution, which led to three composited heating profiles that are considered as prevailing large-scale heating structures. They are, respectively, shallow, bottom heavy (peak near 700 hPa); deep, middle heavy (peak near 400 hPa); and stratiform-like, top heavy (heating peak near 400 hPa and cooling peak near 700 hPa). The amplitudes and occurrence frequencies of the shallow, bottom-heavy heating profiles are comparable to those of the stratiform-like, top-heavy ones. The sequence of the most probable heating evolution is deep tropospheric cooling to bottom-heavy heating, to middle heavy heating, to stratiform-like heating, then back to deep tropospheric cooling. This heating transition appears to occur on different time scales. Each of the prevailing heating structures is interpreted as being composed of particular fractional populations of various types of precipitating cloud systems, which are viewed as the building blocks for the mean. A linear balanced model forced by the three prevailing heating profiles produces rich vertical structures in the circulation with multiple overturning cells, whose corresponding moisture convergence and surface wind fields are very sensitive to the heating structures.


2010 ◽  
Vol 10 (7) ◽  
pp. 18063-18099
Author(s):  
M. von Hobe ◽  
J.-U. Grooß ◽  
G. Günther ◽  
P. Konopka ◽  
I. Gensch ◽  
...  

Abstract. Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brasil, February 2005) and SCOUT-O3 (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations concur with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS). In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. At least for one of these flights, a significant denoxification is in contrast to the observed NO levels suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.


2010 ◽  
Vol 67 (7) ◽  
pp. 2341-2354 ◽  
Author(s):  
Samson Hagos

Abstract Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400 hPa and a cooling peak near 700 hPa and the convective heating with a heating maximum near 700 hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top-heavy (bottom-heavy) large-scale heating profiles associated with excess of stratiform (convective) heating evolve toward a stationary mean profile due to exponential decay of the excess stratiform (convective) heating.


2013 ◽  
Vol 26 (10) ◽  
pp. 3307-3325 ◽  
Author(s):  
Jian Ling ◽  
Chidong Zhang

Abstract Diabatic heating profiles are extremely important to the atmospheric circulation in the tropics and therefore to the earth’s energy and hydrological cycles. However, their global structures are poorly known because of limited information from in situ observations. Some modern global reanalyses provide the temperature tendency from the physical processes. Their proper applications require an assessment of their accuracy and uncertainties. In this study, diabatic heating profiles from three recent global reanalyses [ECMWF Interim Re-Analysis (ERA-Interim), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective Analysis for Research and Applications (MERRA)] are compared to those derived from currently available sounding observations in the tropics and to each other in the absence of the observations. Diabatic heating profiles produced by the reanalyses match well with those based on sounding observations only at some locations. The three reanalyses agree with each other better in the extratropics, where large-scale condensation dominates the precipitation process in data assimilation models, than in the tropics, where cumulus parameterization dominates. In the tropics, they only agree with each other in gross features, such as the contrast between the ITCZs over different oceans. Their largest disagreement is the number and level of heating peaks in the tropics. They may produce a single, double, or triple heating peak at a given location. It is argued that cumulus parameterization cannot be the sole source of the disagreement. Implications of such disagreement are discussed.


2011 ◽  
Vol 11 (1) ◽  
pp. 241-256 ◽  
Author(s):  
M. von Hobe ◽  
J.-U. Grooß ◽  
G. Günther ◽  
P. Konopka ◽  
I. Gensch ◽  
...  

Abstract. Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O3 (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS). In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. However, to reproduce the ClO observations in these simulations, O3 mixing ratios higher than observed had to be assumed, and at least for one of these flights, a significant denoxification is in contrast to the observed NO levels, suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.


2007 ◽  
Vol 64 (7) ◽  
pp. 2593-2610 ◽  
Author(s):  
Courtney Schumacher ◽  
Minghua H. Zhang ◽  
Paul E. Ciesielski

Abstract Heating profiles calculated from sounding networks and other observations during three Tropical Rainfall Measuring Mission (TRMM) field campaigns [the Kwajalein Experiment (KWAJEX), TRMM Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA), and South China Sea Monsoon Experiment (SCSMEX)] show distinct geographical differences between oceanic, continental, and monsoon regimes. Differing cloud types (both precipitating and nonprecipitating) play an important role in determining the total diabatic heating profile. Variations in the vertical structure of the apparent heat source, Q1, can be related to the diurnal cycle, large-scale forcings such as atmospheric waves, and rain thresholds at each location. For example, TRMM-LBA, which occurred in the Brazilian Amazon, had mostly deep convection during the day while KWAJEX, which occurred in the western portion of the Pacific intertropical convergence zone, had more shallow and moderately deep daytime convection. Therefore, the afternoon height of maximum heating was more bottom heavy (i.e., heating below 600 hPa) during KWAJEX compared to TRMM-LBA. More organized convective systems with extensive stratiform rain areas and upper-level cloud decks tended to occur in the early and late morning hours during TRMM-LBA and KWAJEX, respectively, thereby causing Q1 profiles to be top heavy (i.e., maxima from 600 to 400 hPa) at those times. SCSMEX, which occurred in the South China Sea during the monsoon season, had top-heavy daytime and nighttime heating profiles suggesting that mesoscale convective systems occurred throughout the diurnal cycle, although more precipitation and upper-level cloud in the afternoon caused the daytime heating maximum to be larger. A tendency toward bottom- and top-heavy heating profile variations is also associated with the different cloud types that occurred before and after the passage of easterly wave troughs during KWAJEX, the easterly and westerly regimes during TRMM-LBA, and the monsoon onset and postonset active periods during SCSMEX. Rain thresholds based on heavy, moderate, and light/no-rain amounts can further differentiate top-heavy heating, bottom-heavy heating, and tropospheric cooling. These budget studies suggest that model calculations and satellite retrievals of Q1 must account for a large number of factors in order to accurately determine the vertical structure of diabatic heating associated with tropical cloud systems.


2005 ◽  
Vol 44 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Nicholas F. Anderson ◽  
Cedric A. Grainger ◽  
Jeffrey L. Stith

Abstract Airborne in situ measurements of updrafts in tropical convective storms were analyzed to determine the similarities and differences between updrafts in a tropical continental and a tropical oceanic region. Two hundred fifteen updraft cores from the Tropical Rainfall Measuring Mission (TRMM) component of the Large Scale Biosphere–Atmosphere (LBA) experiment (tropical continental wet season) and 377 updraft cores from the Kwajalein Experiment (KWAJEX) (tropical oceanic) were analyzed in a similar manner to that of previous studies of tropical updrafts. Average speed, maximum speed, width, and mass flux of the updraft cores from the TRMM-LBA and KWAJEX were generally similar to each other and also were similar to results from previous studies of tropical updrafts.


2007 ◽  
Vol 135 (6) ◽  
pp. 2226-2241 ◽  
Author(s):  
Yasu-Masa Kodama ◽  
Haruna Okabe ◽  
Yukie Tomisaka ◽  
Katsuya Kotono ◽  
Yoshimi Kondo ◽  
...  

Abstract Tropical Rainfall Measuring Mission observations from multiple sensors including precipitation radar, microwave and infrared radiometers, and a lightning sensor were used to describe precipitation, lightning frequency, and microphysical properties of precipitating clouds over the midlatitude ocean. Precipitation over midlatitude oceans was intense during winter and was often accompanied by frequent lightning. Case studies over the western North Pacific from January and February 2000 showed that some lightning occurred in deep precipitating clouds that developed around cyclones and their attendant fronts. Lightning also occurred in convective clouds that developed in regions of large-scale subsidence behind extratropical cyclones where cold polar air masses were strongly heated and moistened from below by the ocean. The relationships between lightning frequency and the minimum polarization corrected temperature (PCT) at 37 and 85 GHz and the profile of the maximum radar reflectivity resembled relationships derived previously for cases in the Tropics. Smaller lapse rates in the maximum radar reflectivity above the melting level indicate vigorous convection that, although shallow and relatively rare, was as strong as convection over tropical oceans. Lightning was most frequent in systems for which the minimum PCT at 37 GHz was less than 260 K. Lightning and PCT at 85 GHz were not as well correlated as lightning and PCT at 37 GHz. Thus, lightning was frequent in convective clouds that contained many large hydrometeors in the mixed-phase layer, because PCT is more sensitive to large hydrometeors at 37 than at 85 GHz. The relationship between lightning occurrence and cloud-top heights derived from infrared observations was not straightforward. Microphysical conditions that support lightning over the midlatitude ocean in winter were similar to conditions in the Tropics and are consistent with Takahashi’s theory of riming electrification.


2009 ◽  
Vol 9 (15) ◽  
pp. 5847-5864 ◽  
Author(s):  
J. S. Wright ◽  
R. Fu ◽  
A. J. Heymsfield

Abstract. The factors that control the influence of deep convective detrainment on water vapor in the tropical upper troposphere are examined using observations from multiple satellites in conjunction with a trajectory model. Deep convection is confirmed to act primarily as a moisture source to the upper troposphere, modulated by the ambient relative humidity (RH). Convective detrainment provides strong moistening at low RH and offsets drying due to subsidence across a wide range of RH. Strong day-to-day moistening and drying takes place most frequently in relatively dry transition zones, where between 0.01% and 0.1% of Tropical Rainfall Measuring Mission Precipitation Radar observations indicate active convection. Many of these strong moistening events in the tropics can be directly attributed to detrainment from recent tropical convection, while others in the subtropics appear to be related to stratosphere-troposphere exchange. The temporal and spatial limits of the convective source are estimated to be about 36–48 h and 600–1500 km, respectively, consistent with the lifetimes of detrainment cirrus clouds. Larger amounts of detrained ice are associated with enhanced upper tropospheric moistening in both absolute and relative terms. In particular, an increase in ice water content of approximately 400% corresponds to a 10–90% increase in the likelihood of moistening and a 30–50% increase in the magnitude of moistening.


Sign in / Sign up

Export Citation Format

Share Document