scholarly journals Relationships between Upper-Level Circulation over South America and Rainfall over Southeastern South America: A Physical Base for Seasonal Predictions

2010 ◽  
Vol 23 (12) ◽  
pp. 3300-3315 ◽  
Author(s):  
Laura Zamboni ◽  
Carlos R. Mechoso ◽  
Fred Kucharski

Abstract The existence of a significant simultaneous correlation between bimonthly mean precipitation anomalies over southeastern South America (SESA) and either the first or the second (depending on season) leading mode of interannual variability of upper-level wind over South America (SA) is demonstrated during all seasons except winter. The pattern associated with these modes of variability is similar during all seasons and consists of a continental-scale vortex centered over the eastern coast of subtropical SA. The vortex has a quasi-barotropic structure during all seasons, and its variability modifies moisture transport from the South American low-level jet and the western tropical Atlantic to SESA thus creating precipitation anomalies in this region. During spring (October–November) and summer (January–February) the circulation creates a second center of precipitation anomalies over the South Atlantic convergence zone that are of opposite sign to those over SESA, while during fall (April–May) precipitation anomalies are primarily confined to SESA. On the basis of the correlation between upper-level winds and precipitation, an empirical method to produce long-range forecasts of bimonthly mean precipitation over SESA is developed. Method tests in hindcast mode for the period 1959–2001 show a potential for reliable predictions during the southern spring, summer, and fall. The method is further tested in an experimental mode by using Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) wind hindcasts. Forecasts obtained in this way are skillful during spring only, with highest skill during El Niño–Southern Oscillation years. During summer and fall, the DEMETER forecasts of wind anomalies limit the method’s ability to make reliable real predictions.

2009 ◽  
Vol 10 (6) ◽  
pp. 1561-1568 ◽  
Author(s):  
Vasubandhu Misra

Abstract The remote influence of the El Niño–Southern Oscillation (ENSO) strongly manifests over the equatorial Amazon (EA)—including parts of southern Venezuela, Guyana, French Guiana, and Suriname—when there is a large-scale anomalous upper-level divergence over continental tropical South America. Modeling studies conducted in this paper suggest that it is because of the modulation of the local diurnal cycle of the moisture flux convergence, which results in the local amplification of the ENSO signal over the EA. Further, it is shown that the local land surface feedback plays a relatively passive but important role of maintaining these interannual precipitation anomalies over the EA region.


2021 ◽  
Author(s):  
Rogert Sorí ◽  
Raquel Nieto ◽  
Margarida L.R. Liberato ◽  
Luis Gimeno

<p>The regional and global precipitation pattern is highly modulated by the influence of El Niño Southern Oscillation (ENSO), which is considered the most important mode of climate variability on the planet. In this study was investigated the asymmetry of the continental precipitation anomalies during El Niño and La Niña. To do it, a Lagrangian approach already validated was used to determine the proportion of the total Lagrangian precipitation that is of oceanic and terrestrial origin. During both, El Niño and La Niña, the Lagrangian precipitation in regions such as the northeast of South America, the east and west coast of North America, Europe, the south of West Africa, Southeast Asia, and Oceania is generally determined by the oceanic component of the precipitation, while that from terrestrial origin provides a major percentage of the average Lagrangian precipitation towards the interior of the continents. The role of the moisture contribution to precipitation from terrestrial and oceanic origin was evaluated in regions with statistically significant precipitation anomalies during El Niño and La Niña. Two-phase asymmetric behavior of the precipitation was found in regions such the northeast of South America, South Africa, the north of Mexico, and southeast of the United States, etc. principally for December-January-February and June-July-August. For some of these regions was also calculated the anomalies of the precipitation from other datasets to confirm the changes. Besides, for these regions was calculated the anomaly of the Lagrangian precipitation, which agrees in all the cases with the precipitation change. For these regions, it was determined which component of the Lagrangian precipitation, whether oceanic or terrestrial, controlled the precipitation anomalies. A schematic figure represents the extent of the most important seasonal oceanic and terrestrial sources for each subregion during El Niño and La Niña.</p>


2008 ◽  
Vol 26 (11) ◽  
pp. 3457-3476 ◽  
Author(s):  
A. S. Taschetto ◽  
I. Wainer

Abstract. The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Niño – Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however, are confounded by the large internal variance in the region. During MAM and JJA, the South Atlantic SST anomalies affect the magnitude and the meridional displacement of the ITCZ. In JJA, the ENSO has relatively little influence on the interannual variability of the simulated rainfall. During SON, however, the ENSO seems to counteract the effect of the subtropical South Atlantic SST variations on convection over South America.


2019 ◽  
Vol 15 (5) ◽  
pp. 1845-1859 ◽  
Author(s):  
Ignacio A. Jara ◽  
Antonio Maldonado ◽  
Leticia González ◽  
Armand Hernández ◽  
Alberto Sáez ◽  
...  

Abstract. Modern precipitation anomalies in the Altiplano, South America, are closely linked to the strength of the South American summer monsoon (SASM), which is influenced by large-scale climate features sourced in the tropics such as the Intertropical Convergence Zone (ITCZ) and El Niño–Southern Oscillation (ENSO). However, the timing, direction, and spatial extent of precipitation changes prior to the instrumental period are still largely unknown, preventing a better understanding of the long-term drivers of the SASM and their effects over the Altiplano. Here we present a detailed pollen reconstruction from a sedimentary sequence covering the period between 4500 and 1000 cal yr BP in Lago Chungará (18∘ S; 4570 m a.s.l.), a high-elevation lake on the southwestern margin of the Altiplano where precipitation is delivered almost exclusively during the mature phase of the SASM over the austral summer. We distinguish three well-defined centennial-scale anomalies, with dry conditions between 4100–3300 and 1600–1000 cal yr BP and a conspicuous humid interval between 2400 and 1600 cal yr BP, which resulted from the weakening and strengthening of the SASM, respectively. Comparisons with other climate reconstructions from the Altiplano, the Atacama Desert, the tropical Andes, and the southwestern Atlantic coast reveal that – unlike modern climatological controls – past precipitation anomalies at Lago Chungará were largely decoupled from north–south shifts in the ITCZ and ENSO. A regionally coherent pattern of centennial-scale SASM variations and a significant latitudinal gradient in precipitation responses suggest the contribution of an extratropical moisture source for the SASM, with significant effects on precipitation variability in the southern Altiplano.


2020 ◽  
Author(s):  
Regina Rodrigues ◽  
Andrea Taschetto ◽  
Alex Sen Gupta ◽  
Gregory Foltz

<p>In 2013/14 eastern South America experienced one of its worst droughts, leading to water shortages in São Paulo, the world’s fourth most populated city. This event was also responsible for a dengue fever outbreak that tripled the usual number of fatalities and reduced Brazilian coffee production leading to a global shortages and worldwide price increases. The drought was associated with an anomalous anticyclonic circulation off southeast South America that prevented synoptic systems reaching the region while inhibiting the development of the South Atlantic Convergence Zone and its associated rainfall. A concomitant and unprecedented marine heatwave also developed in the southwest Atlantic. Here we show from observations that such droughts and adjacent marine heatwaves have a common remote cause. Atmospheric blocking triggered by tropical convection in the Indian and Pacific oceans can cause persistent anticyclonic circulation that not only leads to severe drought but also generates marine heatwaves in the adjacent ocean. We show that increased shortwave radiation due to reduced cloud cover and reduced ocean heat loss from weaker winds are the main contributors to the establishment of marine heatwaves in the region. The proposed mechanism, which involves droughts, extreme air temperature over land and atmospheric blocking explains approximately 60% of the marine heatwave events in the western South Atlantic. We also identified an increase in frequency, duration, intensity and extension of marine heatwave events over the satellite period 1982–2016. Moreover, surface primary production was reduced during these events with implications for regional fisheries.</p>


2021 ◽  
Vol 2 (2) ◽  
pp. 475-488
Author(s):  
Gabriel M. P. Perez ◽  
Pier Luigi Vidale ◽  
Nicholas P. Klingaman ◽  
Thomas C. M. Martin

Abstract. Organised cloud bands are important features of tropical and subtropical rainfall. These structures are often regarded as convergence zones, alluding to an association with coherent atmospheric flow. However, the flow kinematics is not usually taken into account in classification methods for this type of event, as large-scale lines are rarely evident in instantaneous diagnostics such as Eulerian convergence. Instead, existing convergence zone definitions rely on heuristic rules of shape, duration and size of cloudiness fields. Here we investigate the role of large-scale turbulence in shaping atmospheric moisture in South America. We employ the finite-time Lyapunov exponent (FTLE), a metric of deformation among neighbouring trajectories, to define convergence zones as attracting Lagrangian coherent structures (LCSs). Attracting LCSs frequent tropical and subtropical South America, with climatologies consistent with the South Atlantic Convergence Zone (SACZ), the South American Low-Level Jet (SALLJ) and the Intertropical Convergence Zone (ITCZ). In regions under the direct influence of the ITCZ and the SACZ, rainfall is significantly positively correlated with large-scale mixing measured by the FTLE. Attracting LCSs in south and southeast Brazil are associated with significant positive rainfall and moisture flux anomalies. Geopotential height composites suggest that the occurrence of attracting LCSs in these regions is related with teleconnection mechanisms such as the Pacific–South Atlantic. We believe that this kinematical approach can be used as an alternative to region-specific convergence zone classification algorithms; it may help advance the understanding of underlying mechanisms of tropical and subtropical rain bands and their role in the hydrological cycle.


2006 ◽  
Vol 6 ◽  
pp. 35-41 ◽  
Author(s):  
R. P. Kane

Abstract. As a finer classification of El Niños, ENSOW were defined as years when El Niño (EN) existed on the Peru coast, Southern Oscillation Index SOI (Tahiti minus Darwin pressure) was negative (SO), and Pacific SST anomalies were positive (W). Further, Unambiguous ENSOW were defined as years when SO and W occurred in the middle of the calendar year, while Ambiguous ENSOW were defined as years when SO and W occurred in the earlier or later part of the calendar year (not in the middle). In contrast with India and some other regions where Unambiguous ENSOW were associated predominantly with droughts, in the case of South America, the association was mixed. In Chile on the western coast and Uruguay etc. on the eastern coast, the major effect was of excessive rains. In Argentina and central Brazil, the effects were unclear. In Amazon, the effects were not at all uniform, and were different (droughts or excess rains) or even absent in regions only a few hundred kilometers away from each other. Even in Peru-Ecuador, the effects were clear only in the coastal regions. In the interior and in the Andes, the effects were obscure. In NE Brazil, El Niños have been popularly known to be causing severe droughts. The fact is that during 1871–1998, there were 52 El Niño events, out of which 31 were associated with droughts in NE Brazil, while 21 had no association. The reason is that besides El Niños, another major factor affecting NE Brazil is the influx of moisture from the Atlantic. In some years, warmer Atlantic in conjunction with westward winds can bring moisture to NE Brazil, nullifying the drought effects of El Niños. A curious feature at almost all locations is the occurrence of extreme events (high floods or severe droughts) in some years, apparently without any El Niño or La Niña events. This possibility should always be borne in mind.


2020 ◽  
Author(s):  
Gabriel M. P. Perez ◽  
Pier Luigi Vidale ◽  
Nicholas P. Klingaman ◽  
Thomas C. M. Martin

Abstract. Organised cloud bands are important features of tropical and subtropical rainfall. These structures are often regarded as convergence zones, alluding to an association with coherent atmospheric flow. However, the flow kinematics is not usually taken into account in classification methods for this type of event, as large-scale lines are rarely evident in instantaneous diagnostics such as Eulerian convergence. Instead, existing convergence zone definitions rely on heuristic rules of shape, duration and size of cloudiness fields. Here we investigate the role of large-scale turbulence in shaping atmospheric moisture in South America. We employ the Finite-Time Lyapunov Exponent (FTLE), a metric of deformation among neighboring trajectories, to define convergence zones as attracting Lagrangian Coherent Structures (LCSs). Attracting LCSs frequent tropical and subtropical South America, with climatologies consistent with the South Atlantic Convergence Zone (SACZ), the South American Low-level Jet (SALLJ) and the Intertropical Convergence Zone (ITCZ). In regions under the direct influence of the ITCZ and the SACZ, rainfall is significantly positively correlated with large-scale mixing measured by the FTLE. Attracting LCSs in South and Southeast Brazil are associated with significant positive rainfall and moisture flux anomalies. Geopotential height composites suggest that the occurrence of attracting LCSs in these regions is related with teleconnection mechanisms such as the Pacific-South Atlantic. We believe that this kinematical approach can be used as an alternative to region-specific convergence zone classification algorithms; it may help advance the understanding of underlying mechanisms of tropical and subtropical rain bands and their role in the hydrological cycle.


1999 ◽  
Vol 12 (7) ◽  
pp. 1877-1891 ◽  
Author(s):  
Brant Liebmann ◽  
George N. Kiladis ◽  
JoséA. Marengo ◽  
Tércio Ambrizzi ◽  
John D. Glick

2006 ◽  
Vol 45 (2) ◽  
pp. 318-333 ◽  
Author(s):  
T. A. Tarasova ◽  
J. P. R. Fernandez ◽  
I. A. Pisnichenko ◽  
J. A. Marengo ◽  
J. C. Ceballos ◽  
...  

Abstract The regional Eta workstation (WS) model with horizontal resolution of 40 km has been integrated over South America for January 2003. The NCEP–DOE Reanalysis II was used for initial and lateral boundary conditions. The comparison of the model-simulated and satellite-derived values of monthly mean incident solar radiation at the surface demonstrates that the former values are larger by 20%–30% over the entire region. To improve the surface flux representation in the model, a new solar radiation scheme has been implemented in it. An offline comparison of the original and the new radiation schemes with the detailed line-by-line method demonstrates a higher accuracy for the new scheme. With the new scheme, the model-simulated incident solar radiation at the surface is in a better agreement with the satellite-derived data. Nevertheless, a noticeable systematic difference of 10%–20% still remains, probably because of the incorrect description of cloud parameters in the model. The lower incident solar radiation in the new version of the model causes a decrease of near-surface air temperature by 0.1°–1°C and a decrease of precipitation rate by up to 20%–30% over most of the continent. The increase in the simulated incident solar radiation and temperature is found in the region of the South Atlantic convergence zone, which is responsible for the enhanced cloudiness and precipitation in the central and southeastern parts of Brazil during summer. The model results are compared with observational data of meteorological stations, the Global Precipitation Climatology Project (GPCP), and the South American Low-Level Jet Experiment (SALLJEX) and are discussed.


Sign in / Sign up

Export Citation Format

Share Document