scholarly journals Downstream Development of the Summertime Tropical Cyclone/Submonthly Wave Pattern in the Extratropical North Pacific

2010 ◽  
Vol 23 (8) ◽  
pp. 2223-2229 ◽  
Author(s):  
Ken-Chung Ko ◽  
Huang-Hsiung Hsu

Abstract The impact of tropical perturbation on the extratropical wave activity in the North Pacific in the submonthly time scale is demonstrated here. Previous studies identified a tropical cyclone (TC)/submonthly wave pattern, which propagated north-northwestward in the Philippine Sea and recurved in the oceanic region between Japan and Taiwan. This study found that, after the arrival of the TC/submonthly wave pattern at the recurving region, the eastward-propagating wave activity in the extratropical North Pacific was significantly enhanced. It is suggested that the TC/submonthly wave pattern, which is originated in the tropical western North Pacific, enhances the eastward energy propagation of Rossby wave–like perturbation in the extratropical North Pacific and may have an impact on the long-range weather predictability in the eastern North Pacific and western North America.

2009 ◽  
Vol 137 (4) ◽  
pp. 1295-1319 ◽  
Author(s):  
Patrick A. Harr ◽  
Jonathan M. Dea

Abstract The movement of a tropical cyclone into the midlatitudes involves interactions among many complex physical processes over a variety of space and time scales. Furthermore, the extratropical transition (ET) of a tropical cyclone may also result in a high-amplitude Rossby wave response that can extend to near-hemispheric scales. After an ET event occurs over the western portion of a Northern Hemisphere ocean basin, the high-amplitude downstream response often forces anomalous midlatitude circulations for periods of days to a week. These circulations may then be related to high-impact weather events far downstream of the forcing by the ET event. In this study, downstream development following ET events over the western North Pacific Ocean is examined. Local eddy kinetic energy analyses are conducted on four cases of North Pacific tropical cyclones of varying characteristics during ET into varying midlatitude flow characteristics during 15 July–30 September 2005. The goal is to examine the impact of each case on downstream development across the North Pacific during a period in which these events might increase the midlatitude cyclogenesis across the North Pacific during a season in which cyclogenesis is typically weak. Four typhoon (TY) cases from the summer of 2005 are chosen to represent the wide spectrum of variability in ET. This includes a case (TY Nabi 14W) that directly resulted in an intense midlatitude cyclone, a case in which a weak midlatitude cyclone resulted (TY Banyan 07W), a case in which the decaying tropical cyclone was absorbed into the midlatitude flow (TY Guchol 12W), and a case (TY Saola 17W) in which the tropical cyclone decayed under the influence of strong vertical wind shear. The variability in downstream response to each ET case is related to specific physical characteristics associated with the evolution of the ET process and the phasing between the poleward-moving tropical cyclone and the midlatitude circulation into which it is moving. A case of downstream development that occurred during September 2005 without an ET event is compared with the four ET cases.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2018 ◽  
Vol 52 (1-2) ◽  
pp. 245-256 ◽  
Author(s):  
Xiushu Pu ◽  
Quanliang Chen ◽  
Quanjia Zhong ◽  
Ruiqiang Ding ◽  
Ting Liu

2018 ◽  
Vol 31 (2) ◽  
pp. 761-774 ◽  
Author(s):  
Chao Wang ◽  
Liguang Wu

The strong westerly shear to the south flank of the tropical upper-tropospheric trough (TUTT) limits the eastward extension of tropical cyclone (TC) formation over the western North Pacific (WNP) and thus the zonal shift of the TUTT in warming scenarios has an important implication for the mean formation location of TCs. The impact of global warming on the zonal shift of the TUTT is investigated by using output from phase 5 of the Coupled Model Intercomparison Project (CMIP5) of 36 climate models in this study. It is found that considerable spread exists in the zonal position, orientation, and intensity of the simulated-climatologic TUTT in the historical runs, which is forced by observed conditions such as changes in atmospheric composition, solar forcing, and aerosols. The large spread is closely related to the diversity in the simulated SST biases over the North Pacific. Based on the 15 models with relatively high skill in their historical runs, the near-term (2016–35) projection shows no significant change of the TUTT longitude, while the TUTT experiences an eastward shift of 1.9° and 3.2° longitude in the representative concentration pathway (RCP) 4.5 and 8.5 scenarios in the long-term (2081–2100) projection with considerable intermodel variability. Further examination indicates that the projected changes in the zonal location of the TUTT are also associated with the projected relative SST anomalies over the North Pacific. A stronger (weaker) relative SST warming over the North Pacific favors an eastward (westward) shift of the TUTT, suggesting that the spatial pattern of the future SST change is an important factor for the zonal shift of the mean formation location of TCs.


2020 ◽  
pp. 269-286
Author(s):  
Robert L. Brownell ◽  
Phillip J. Clapham ◽  
Tomio Miyashita ◽  
Toshio Kasuya

The North Pacific right whale (Eubalaena japonica) is among the most endangered of all great whales, having been subject to intensivecommercial whaling in the 19th century. All available 20th century records of this species in the North Pacific were reviewed. There hasbeen a total of 1,965 recorded sightings since 1900; of these, 988 came from the western North Pacific, 693 from the eastern North Pacificand 284 had no location specified. Thirteen strandings (all but one from the western North Pacific) were recorded. Known catches forcommercial or scientific purposes totalled 742 (331 in the western North Pacific, 411 in the eastern North Pacific). Most of the reportedSoviet ‘sightings’ in the eastern North Pacific were actually catches, as may be the case for Soviet sightings in the Okhotsk Sea. In addition,the impact of known Soviet illegal catches in the Okhotsk Sea may be reflected in an apparent decline in sightings after the 1960s (althoughthis may be partly explained by low observer effort). Overall, the data support the hypothesis that at least two stocks of right whales existin the North Pacific. Any recovery in the western North Pacific population was compromised by the Soviet catches in the Okhotsk region,although recent sightings suggest that this population is still large enough to sustain reproduction. By contrast, Soviet catches in thenow-smaller eastern North Pacific population have severely reduced its prospects for recovery. Although the prognosis for this populationis poor, a long-term monitoring programme is required to better understand its conservation status and to determine whether it may beaffected by human-related problems that would require mitigation.


2005 ◽  
Vol 18 (12) ◽  
pp. 1902-1924 ◽  
Author(s):  
Chi-Yung Tam ◽  
Ngar-Cheung Lau

Abstract The impact of the El Niño–Southern Oscillation (ENSO) on the atmospheric intraseasonal variability in the North Pacific is assessed, with emphasis on how ENSO modulates midlatitude circulation anomalies associated with the Madden–Julian oscillation (MJO) in the Tropics and the westward-traveling patterns (WTP) in high latitudes. The database for this study consists of the output of a general circulation model (GCM) experiment subjected to temporally varying sea surface temperature (SST) forcing in the tropical Pacific, and observational reanalysis products. Diagnosis of the GCM experiment indicates a key region in the North Pacific over which the year-to-year variation of intraseasonal activity is sensitive to the SST conditions in the Tropics. In both the simulated and observed atmospheres, the development phase of the dominant circulation anomaly in this region is characterized by incoming wave activity from northeast Asia and the subtropical western Pacific. Southeastward dispersion from the North Pacific to North America can be found in later phases of the life cycle of the anomaly. The spatial pattern of this recurrent extratropical anomaly contains regional features that are similar to those appearing in composite charts for prominent episodes of the MJO and the WTP. Both the GCM and reanalysis data indicate that the amplitude of intraseasonal variability near the key region, as well as incoming wave activity in the western Pacific and dispersion to the western United States, are enhanced in cold ENSO events as compared to warm events. Similar modulations of the MJO-related circulation patterns in the extratropics by ENSO forcing are discernible in the model simulation. It is inferred from these findings that ENSO can influence the North Pacific intraseasonal activity through its effects on the evolution of convective anomalies in the tropical western Pacific. On the other hand, there is little modification by ENSO of the circulation features associated with the WTP. The combined effect of the MJO and WTP on the intraseasonal circulation in the North Pacific is studied. Based on multiple regression analysis, it is found that the MJO and WTP make comparable contributions to the variability in the midlatitude North Pacific. These contributions may be treated as a linear combination of the anomalies attributed to the MJO and WTP separately.


2009 ◽  
Vol 39 (6) ◽  
pp. 1317-1339 ◽  
Author(s):  
Robert S. Pickart ◽  
Alison M. Macdonald ◽  
G. W. K. Moore ◽  
Ian A. Renfrew ◽  
John E. Walsh ◽  
...  

Abstract The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.


Zootaxa ◽  
2021 ◽  
Vol 4950 (2) ◽  
pp. 201-247
Author(s):  
DALE R. CALDER ◽  
LES WATLING

Fourteen species of hydroids, collected during August 2019 by ROV SuBastian of the Schmidt Ocean Institute, are reported from the Emperor Seamount chain in the western North Pacific Ocean. Two others, Candelabrum sp. and Eudendrium sp., were observed only on videos taken by the ROV. From collections and video observations, eight species of hydroids were found at Jingū Seamount, three at Yomei, Nintoku, and Annei seamounts, and one at Koko Seamount and Hess Rise. At Suiko and Godaigo seamounts, hydroids were seen in videos but they could not be identified. Latebrahydra schulzei, an endobiotic associate of the hexactinellid sponge Walteria flemmingii Schulze, 1886 from Annei Seamount and Hess Rise, is described as a new genus and species tentatively attributed to Hydractiniidae L. Agassiz, 1862. Another new species, Hydractinia galeai, is described from Jingū Seamount. Among its distinctive characters is a zooid termed a sellectozooid, likely serving in both food capture and defence. Hydroids examined from Yomei, Nintoku, and Jingū seamounts are elements of a cold-water fauna occurring in the North Pacific Boreal Bathyal province, while those of Annei and Koko seamounts, and Hess Rise, are part of the biota of the Central North Pacific Bathyal province. Hydroids identified as Bouillonia sp., from Nintoku Seamount, represent the first record of this predominantly deep water tubulariid genus in the North Pacific Ocean. Bonneviella superba Nutting, 1915, from Jingū Seamount, is reported for the first time outside the Aleutian Islands. Bonneviella cf. gracilis Fraser, 1939, known elsewhere only from Dease Strait in the western Canadian Arctic, was also collected on Jingū. In addition to hydroids, medusae of Ptychogastria polaris Allman, 1878 were observed on videos from Nintoku, Jingū, Annei, and Koko seamounts at depths between 2423–1422 m. An unidentified siphonophore was observed near bottom at 2282 m on Nintoku Seamount. 


Sign in / Sign up

Export Citation Format

Share Document