scholarly journals Seasonal Evolution of Aleutian Low Pressure Systems: Implications for the North Pacific Subpolar Circulation*

2009 ◽  
Vol 39 (6) ◽  
pp. 1317-1339 ◽  
Author(s):  
Robert S. Pickart ◽  
Alison M. Macdonald ◽  
G. W. K. Moore ◽  
Ian A. Renfrew ◽  
John E. Walsh ◽  
...  

Abstract The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.

2008 ◽  
Vol preprint (2008) ◽  
pp. 1 ◽  
Author(s):  
Robert S. Pickart ◽  
G.W.K. Moore ◽  
Alison M. Macdonald ◽  
Ian A. Renfrew ◽  
John E. Walsh ◽  
...  

2007 ◽  
Vol 20 (8) ◽  
pp. 1523-1538 ◽  
Author(s):  
Xiaojie Zhu ◽  
Jilin Sun ◽  
Zhengyu Liu ◽  
Qinyu Liu ◽  
Jonathan E. Martin

Abstract An analysis of cyclone activity in winter associated with years of strong and weak Aleutian low in the North Pacific is presented. From 1958 to 2004, 10 winters with a strong Aleutian low are defined as the strong years, while 8 winters with a weak Aleutian low are defined as the weak years. Employing a system-centered Lagrangian method, some characteristics of the cyclone activity in both sets of years are revealed. The cyclone frequency, duration, and intensity are nearly the same in both strong and weak years. The cyclone tracks in the strong years are more zonal than those in the weak years. More intense cyclone events and more large cyclone cases occur in strong years than in weak years and the deepening of cyclones in strong years is stronger than that in weak years. The analyses of geopotential height, wind, stationary Rossby wavenumber, and Eady growth rate index at 500 or 300 hPa reveal that conditions are favorable for more zonal tracks and greater cyclone growth in strong years than in weak years. An estimation of the relative change of cyclone intensity and the relative change of Aleutian low intensity is made, which shows that the interannual change of cyclone intensity is about 73% of the interannual change of Aleutian low intensity. This result suggests that the evolution of individual cyclones may be a significant driver of changes in the Aleutian low.


2015 ◽  
Vol 28 (12) ◽  
pp. 4941-4949 ◽  
Author(s):  
Tae-Won Park ◽  
Yi Deng ◽  
Wenhong Li ◽  
Song Yang ◽  
Ming Cai

Abstract The mass footprints associated with atmospheric blocks over the North Pacific are evaluated by constructing daily tendencies of total mass over the blocking domain from three-dimensional mass fluxes throughout the life cycle of a composite blocking event. The results highlight the major role of mass convergence driven by low-frequency (with periods >1 week) atmospheric disturbances during both the development and decay stage of a block. Specifically, low-frequency eddies are responsible for the accelerated mass buildup 4 days prior to the peak intensity of a block, and they also account for the rapid mass loss afterward. High-frequency, subweekly scale disturbances have statistically significant positive contributions to the mass loss during the decay stage, and also show weak negative contributions to the development of the blocking high prior to the peak of the high. The majority of the mass convergence (divergence) responsible for the intensification (decay) of the blocking high occurs in the middle-to-lower troposphere and is largely attributed to mass flux driven by low-frequency meridional (zonal) winds. Also discussed are the implications of this new mass perspective of atmospheric blocks for understanding dynamics of blocking highs and for model bias detection and attribution.


2019 ◽  
Vol 6 (3) ◽  
pp. 181463 ◽  
Author(s):  
R. Cartwright ◽  
A. Venema ◽  
V. Hernandez ◽  
C. Wyels ◽  
J. Cesere ◽  
...  

Alongside changing ocean temperatures and ocean chemistry, anthropogenic climate change is now impacting the fundamental processes that support marine systems. However, where natural climate aberrations mask or amplify the impacts of anthropogenic climate change, identifying key detrimental changes is challenging. In these situations, long-term, systematic field studies allow the consequences of anthropogenically driven climate change to be distinguished from the expected fluctuations in natural resources. In this study, we describe fluctuations in encounter rates for humpback whales, Megaptera novaeangliae , between 2008 and 2018. Encounter rates were assessed during transect surveys of the Au'Au Channel, Maui, Hawaii. Initially, rates increased, tracking projected growth rates for this population segment. Rates reached a peak in 2013, then declined through 2018. Specifically, between 2013 and 2018, mother–calf encounter rates dropped by 76.5%, suggesting a rapid reduction in the reproductive rate of the newly designated Hawaii Distinct Population Segment of humpback whales during this time. As this decline coincided with changes in the Pacific decadal oscillation, the development of the NE Pacific marine heat wave and the evolution of the 2016 El Niño, this may be another example of the impact of this potent trifecta of climatic events within the North Pacific.


2010 ◽  
Vol 23 (8) ◽  
pp. 2223-2229 ◽  
Author(s):  
Ken-Chung Ko ◽  
Huang-Hsiung Hsu

Abstract The impact of tropical perturbation on the extratropical wave activity in the North Pacific in the submonthly time scale is demonstrated here. Previous studies identified a tropical cyclone (TC)/submonthly wave pattern, which propagated north-northwestward in the Philippine Sea and recurved in the oceanic region between Japan and Taiwan. This study found that, after the arrival of the TC/submonthly wave pattern at the recurving region, the eastward-propagating wave activity in the extratropical North Pacific was significantly enhanced. It is suggested that the TC/submonthly wave pattern, which is originated in the tropical western North Pacific, enhances the eastward energy propagation of Rossby wave–like perturbation in the extratropical North Pacific and may have an impact on the long-range weather predictability in the eastern North Pacific and western North America.


1993 ◽  
Vol 50 (12) ◽  
pp. 2608-2625 ◽  
Author(s):  
William G. Pearcy ◽  
Joseph P. Fisher ◽  
Mary M. Yoklavich

Abundances of Pacific pomfret (Brama japonica), an epipelagic fish of the North Pacific Ocean, were estimated from gillnet catches during the summers of 1978–1989. Two size modes were common: small pomfret <1 yr old, and large fish ages 1–6. Large and small fish moved northward as temperatures increased, but large fish migrated farther north, often into the cool, low-salinity waters of the Central Subarctic Pacific. Lengths of small fish were positively correlated with latitude and negatively correlated with summer surface temperature. Interannual variations in the latitude of catches correlated with surface temperatures. Large catches were made in the eastern Gulf of Alaska (51–55°N) but modes of small pomfret were absent here, and large fish were rare at these latitudes farther to the west. Pomfret grow rapidly during their first two years of life. They are pectoral fin swimmers that swim continuously. They prey largely on gonatid squids in the region of the Subarctic Current in the Gulf of Alaska during summer. No evidence was found for aggregations on a scale ≤1 km. Differences in the incidence of tapeworm, spawning seasons, and size distributions suggest the possibility of discrete populations in the North Pacific Ocean.


2013 ◽  
Vol 70 (5) ◽  
pp. 1013-1022 ◽  
Author(s):  
Nan-Jay Su ◽  
Chi-Lu Sun ◽  
André E. Punt ◽  
Su-Zan Yeh ◽  
Gerard DiNardo ◽  
...  

Abstract Su, N.-J., Sun, C.-L., Punt, A. E., Yeh, S.-Z., DiNardo, G., and Chang, Y.-J. 2013. An ensemble analysis to predict future habitats of striped marlin (Kajikia audax) in the North Pacific Ocean. – ICES Journal of Marine Science, 70: 1013–1022. Striped marlin is a highly migratory species distributed throughout the North Pacific Ocean, which shows considerable variation in spatial distribution as a consequence of habitat preference. This species may therefore shift its range in response to future changes in the marine environment driven by climate change. It is important to understand the factors determining the distribution of striped marlin and the influence of climate change on these factors, to develop effective fisheries management policies given the economic importance of the species and the impact of fishing. We examined the spatial patterns and habitat preferences of striped marlin using generalized additive models fitted to data from longline fisheries. Future distributions were predicted using an ensemble analysis, which represents the uncertainty due to several global climate models and greenhouse gas emission scenarios. The increase in water temperature driven by climate change is predicted to lead to a northward displacement of striped marlin in the North Pacific Ocean. Use of a simple predictor of water temperature to describe future distribution, as in several previous studies, may not be robust, which emphasizes that variables other than sea surface temperatures from bioclimatic models are needed to understand future changes in the distribution of large pelagic species.


2018 ◽  
Vol 37 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Kenji M. Matsuzaki ◽  
Noritoshi Suzuki

Abstract. Expedition 341 of the Integrated Ocean Drilling Program (IODP) retrieved sediment cores spanning the time interval between the Pleistocene and Miocene from the southern Gulf of Alaska. Onboard Pleistocene radiolarian biostratigraphy is hereby refined by increasing the sampling resolution. The 178 core samples from the upper 190 m CCSF-B (Composite Core Depth Scale F-B) of Site U1417 contained faunal elements similar to the northwestern Pacific; for example, the three biozones in the northwestern Pacific (i.e., Eucyrtidium matuyamai, Stylatractus universus and Botryostrobus aquilonaris) were also recognized in the Gulf of Alaska, spanning 1.80–1.13 Ma, 1.13–0.45 Ma, and the last 0.45 Myr, respectively. Based on the age model that we used in this study and the shipboard paleomagnetic reversal events, the first occurrences (FOs) of Amphimelissa setosa and Schizodiscus japonicus in the northeastern Pacific were preliminarily determined to be 1.48 and 1.30 Ma, respectively. The last occurrence (LO) of Eucyrtidium matuyamai and the FO of Lychnocanoma sakaii, both well-established bioevents in the northwestern Pacific, were dated at 0.80 and 1.13 Ma, respectively. The LO of E. matuyamai is a synchronous event at 1.05 ± 0.1 Ma in the North Pacific, while the FOs of A. setosa and S. japonicus at 1.48 and 1.30 Ma, respectively, are significantly older than what has been found elsewhere.


2020 ◽  
Vol 117 (52) ◽  
pp. 33034-33042
Author(s):  
Ellie Broadman ◽  
Darrell S. Kaufman ◽  
Andrew C. G. Henderson ◽  
Irene Malmierca-Vallet ◽  
Melanie J. Leng ◽  
...  

Arctic Alaska lies at a climatological crossroads between the Arctic and North Pacific Oceans. The modern hydroclimate of the region is responding to rapidly diminishing sea ice, driven in part by changes in heat flux from the North Pacific. Paleoclimate reconstructions have improved our knowledge of Alaska’s hydroclimate, but no studies have examined Holocene sea ice, moisture, and ocean−atmosphere circulation in Arctic Alaska, limiting our understanding of the relationship between these phenomena in the past. Here we present a sedimentary diatom assemblage and diatom isotope dataset from Schrader Pond, located ∼80 km from the Arctic Ocean, which we interpret alongside synthesized regional records of Holocene hydroclimate and sea ice reduction scenarios modeled by the Hadley Centre Coupled Model Version 3 (HadCM3). The paleodata synthesis and model simulations suggest the Early and Middle Holocene in Arctic Alaska were characterized by less sea ice, a greater contribution of isotopically heavy Arctic-derived moisture, and wetter climate. In the Late Holocene, sea ice expanded and regional climate became drier. This climatic transition is coincident with a documented shift in North Pacific circulation involving the Aleutian Low at ∼4 ka, suggesting a Holocene teleconnection between the North Pacific and Arctic. The HadCM3 simulations reveal that reduced sea ice leads to a strengthened Aleutian Low shifted west, potentially increasing transport of warm North Pacific water to the Arctic through the Bering Strait. Our findings demonstrate the interconnectedness of the Arctic and North Pacific on multimillennial timescales, and are consistent with future projections of less sea ice and more precipitation in Arctic Alaska.


Sign in / Sign up

Export Citation Format

Share Document