Evaluating the Simulated Seasonality of Soil Moisture with Earth Observation Data

2009 ◽  
Vol 10 (6) ◽  
pp. 1548-1560 ◽  
Author(s):  
Richard J. Ellis ◽  
Christopher M. Taylor ◽  
Graham P. Weedon ◽  
Nicola Gedney ◽  
Douglas B. Clark ◽  
...  

Abstract A critical function of a land surface scheme, used in climate and weather prediction models, is to partition the energy from insolation into sensible and latent heat fluxes. Many use a soil moisture function to control the surface moisture fluxes through the transpiration. The validity and global distribution of the parameters used to calculate this soil moisture stress function are difficult to assess. This work presents a method to map soil moisture stress globally from an earth observation vegetation index and precipitation data, and it compares the resulting distributions with output from the Joint U.K. Land Environment Simulator (JULES) land surface scheme. A number of model runs with different soil and vegetation parameters are compared. These examine the sensitivity of the seasonality of soil moisture stress, within the model, to the parameterization of soil hydraulic properties and the seasonality of leaf area index in the vegetation. It is found that the seasonality of soil moisture within the model is more sensitive to the soil hydraulic properties than the leaf area index. The partitioning of throughfall into evaporation and runoff, in the model, is the dominant factor in determining the timing of soil moisture stress.

2019 ◽  
Author(s):  
Sophie Flack-Prain ◽  
Patrick Meir ◽  
Yadvinder Malhi ◽  
Thomas Luke Smallman ◽  
Mathew Williams

Abstract. The capacity of Amazon forests to sequester carbon is threatened by climate change-induced shifts in precipitation patterns. However, the relative importance of plant physiology, ecosystem structure, and trait composition responses in determining variation in GPP, remain largely unquantified, and vary among models. We evaluate the relative importance of key climate constraints to gross primary productivity (GPP), comparing direct plant physiological responses to water availability and indirect structural and trait responses (via changes to leaf area index (LAI), roots and photosynthetic capacity). To separate these factors we combined the Soil-Plant-Atmosphere model with forcing and observational data from seven intensively studied forest plots along an Amazon soil moisture-stress gradient. We also used machine learning to evaluate the relative importance of individual climate factors across sites. Our model experiments showed that variation in LAI was the principal driver of differences in GPP across the gradient, accounting for 33 % of observed variation. Differences in photosynthetic capacity (Vcmax and Jmax) accounted for 21 % of variance, and climate (which included physiological responses) accounted for 16 %. Sensitivity to differences in climate was highest where shallow rooting depth was coupled with high LAI. On sub-annual timescales, the relative importance of LAI in driving GPP increased with soil moisture-stress (R2 = 0.72), whilst the importance of solar radiation decreased (R2 = 0.90). Given the role of LAI in driving GPP across Amazon forests, improved mapping of canopy dynamics is critical, opportunities for which are offered by new satellite-based remote sensing missions such as GEDI, Sentinel and FLEX.


2017 ◽  
Vol 21 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
David Fairbairn ◽  
Alina Lavinia Barbu ◽  
Adrien Napoly ◽  
Clément Albergel ◽  
Jean-François Mahfouf ◽  
...  

Abstract. This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into a land surface model using the SAFRAN–ISBA–MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) an atmospheric reanalysis (SAFRAN) over France, which forces (2) the three-layer ISBA land surface model, which then provides drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and with a subset of stations with low-anthropogenic influence, over several years. This study makes use of the A-gs version of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct shortwave and long-wave radiation by approximately 5 % averaged over France. The ISBA-A-gs model also substantially underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i) a correction of the minimum LAI model parameter for grasslands and (ii) a bias-correction of the model radiative forcing. Two data assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9 % and 18 % respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median discharge Nash efficiency by about 7 %. The poor performance of the SEKF originates from the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases in drainage and/or runoff and to insufficient corrections during winter, respectively. Possible ways to improve the model are discussed, including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous regions. The data assimilation should be advanced by accounting for model and forcing uncertainties.


2018 ◽  
Author(s):  
Ali Asaadi ◽  
Vivek K. Arora ◽  
Joe R. Melton ◽  
Paul Bartlett

Abstract. Leaf area index (LAI) and its seasonal dynamics are key determinants of vegetation productivity in nature and as represented in terrestrial biosphere models seeking to understand land-surface atmosphere flux dynamics and its response to climate change. Non-structural carbohydrates (NSCs) and their seasonal variability are known to play a crucial role in seasonal variation of leaf phenology and growth and functioning of plants. The carbon stored in NSC pools provides a buffer during times when supply and demand of carbon are asynchronous. An example of this role is illustrated when NSCs from previous years are used to initiate leaf onset at the arrival of favourable weather conditions. In this study, we incorporate NSC pools and associated parameterizations of new processes in the modelling framework of the Canadian Land Surface Scheme-Canadian Terrestrial Ecosystem Model (CLASS-CTEM) with an aim to improve the seasonality of simulated LAI. The performance of these new parameterizations is evaluated by comparing simulated LAI and atmosphere-land CO2 fluxes, to their observation-based estimates, at three sites characterized by broadleaf cold deciduous trees selected from the Fluxnet database. Results show an improvement in leaf onset and offset times with about 2 weeks shift towards earlier times during the year in better agreement with observations. These improvements in simulated LAI help to improve the simulated seasonal cycle of gross primary productivity (GPP) and as a result simulated net ecosystem productivity (NEP) as well.


2019 ◽  
Author(s):  
Xinxuan Zhang ◽  
Viviana Maggioni ◽  
Azbina Rahman ◽  
Paul Houser ◽  
Yuan Xue ◽  
...  

Abstract. Vegetation plays a fundamental role not only in the energy and carbon cycle, but also the global water balance by controlling surface evapotranspiration. Thus, accurately estimating vegetation-related variables has the potential to improve our understanding and estimation of the dynamic interactions between the water and carbon cycles. This study aims to assess to what extent a land surface model can be optimized through the assimilation of leaf area index (LAI) observations at the global scale. Two observing system simulation experiments (OSSEs) are performed to evaluate the efficiency of assimilating LAI through an Ensemble Kalman Filter (EnKF) to estimate LAI, evapotranspiration (ET), interception evaporation (CIE), canopy water storage (CWS), surface soil moisture (SSM), and terrestrial water storage (TWS). Results show that the LAI data assimilation framework effectively reduces errors in LAI simulations. LAI assimilation also improves the model estimates of all the water flux and storage variables considered in this study (ET, CIE, CWS, SSM, and TWS), even when the forcing precipitation is strongly positively biased (extremely wet condition). However, it tends to worsen some of the model estimated water-related variables (SSM and TWS) when the forcing precipitation is affected by a dry bias. This is attributed to the fact that the amount of water in the land surface model is conservative and the LAI assimilation introduces more vegetation, which requires more water than what available within the soil. Future work should investigate a multi-variate data assimilation system that concurrently merges both LAI and soil moisture (or TWS) observations.


2019 ◽  
Author(s):  
Bertrand Bonan ◽  
Clément Albergel ◽  
Yongjun Zheng ◽  
Alina Lavinia Barbu ◽  
David Fairbairn ◽  
...  

Abstract. This paper introduces an Ensemble Square Root Filter (EnSRF), a deterministic Ensemble Kalman Filter, to the context of assimilating jointly observations of surface soil moisture (SSM) and leaf area index (LAI) in the Land Data Assimilation System LDAS-Monde. By ingesting those satellite-derived products, LDAS-Monde constrains the Interaction between Soil, Biosphere and Atmosphere (ISBA) land surface model (LSM), coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (CTRIP), to improve the reanalysis of land surface variables (LSVs). To evaluate its ability to produce improved LSVs reanalyses, the EnSRF is compared with the Simplified Extended Kalman, which has been routinely operated in LDAS-Monde, in a real case over the well-studied Euro-Mediterranean region at a 0.25° spatial resolution between 2008 and 2017. Both data assimilation approaches provide a positive impact on SSM and LAI estimates with respect to the model alone, putting them closer to assimilated observations. SEKF and EnSRF have a similar behaviour for LAI showing performances that are influenced by the vegetation type. For SSM, EnSRF estimates tend to be closer to observations than SEKF. The impact of assimilating SSM and LAI is also assessed on unobserved soil moisture in the other layers of soil. Unobserved control variables are updated in the EnSRF through covariances and correlations sampled from the ensemble linking them to observed control variables. In our context, a strong correlation between SSM and soil moisture in deeper soil layers is exhibited, as expected, showing seasonal patterns that vary geographically. Moderate correlation and anti-correlations are also noticed between LAI and soil moisture in spring, summer and autumn, their absolute value tending to be larger for soil moisture in root-zone areas, showing that assimilating LAI can have an influence on soil moisture. Finally an independent evaluation of both assimilation approaches is conducted using satellite estimates of evapotranspiration and gross primary production (GPP) as well as measures of river discharges from gauging stations. The EnSRF shows a systematic albeit moderate improvement for evapotranspiration and GPP and a highly positive impact on river discharges, while the SEKF exhibits a more contrasting performance.


2020 ◽  
Author(s):  
Anna B. Harper ◽  
Karina E. Williams ◽  
Patrick C. McGuire ◽  
Maria Carolina Duran Rojas ◽  
Debbie Hemming ◽  
...  

Abstract. Drought is predicted to increase in the future due to climate change, bringing with it a myriad of impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance, in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local/regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales, and evaluated ten different representations of stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high latitudes/cold region sites, while LE was best simulated in temperate and high latitude/cold sites. Errors not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savannah and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14, and the soil depth from 3m to 10.8m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation, when the onset of stress was delayed, and when roots extended deeper into the soil. For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and made the simulation worse. Further evaluation into the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress.


2021 ◽  
Author(s):  
Souhail Boussetta ◽  
Gabriele Arduini ◽  
Gianpaolo Balsamo ◽  
Emanuel Dutra ◽  
Anna Agusti-Panareda ◽  
...  

<p>With increasingly higher spatial resolution and a broader applications, the importance of soil representation (e.g. soil depth, vertical discretisation, vegetation rooting) within land surface models is enhanced. Those modelling choices actually affects the way land surfaces store and regulate water, energy and also carbon fluxes. Heat and water vapour fluxes towards the atmosphere and deeper soil, exhibit variations spanning a range of time scales from minutes to months in the coupled land-atmosphere system. This is further modulated by the vertical roots' distribution, and soil moisture stress function, which control evapotranspiration under soil moisture stress conditions. Currently in the ECMWF land Surface Scheme the soil column is represented by a fixed 4 layers configuration with a total of approximately 3m depth.</p><p>In the present study we explore new configurations with increased soil depth (up to 8m) and higher vertical discretisation (up to 10 layers) including a dissociation between the treatment of water and heat fluxes. Associated with the soil vertical resolution, the vertical distribution of roots is also investigated. A new scheme that assumes a uniform root distribution with an associated maximum rooting depth is explored. The impact of these new configurations is assessed through surface offline simulations driven by the ERA5 meteorological forcing against in-situ and global products of energy, water and carbon fluxes with a particular focus on the diurnal cycle and extreme events in recent years.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1362
Author(s):  
David Stevens ◽  
Pedro M. A. Miranda ◽  
René Orth ◽  
Souhail Boussetta ◽  
Gianpaolo Balsamo ◽  
...  

The surface-atmosphere turbulent exchanges couple the water, energy and carbon budgets in the Earth system. The biosphere plays an important role in the evaporation process, and vegetation related parameters such as the leaf area index (LAI), vertical root distribution and stomatal resistance are poorly constrained due to sparse observations at the spatio-temporal scales at which land surface models (LSMs) operate. In this study, we use the Carbon Hydrology Tiled European Center for Medium-Range Weather Forecasts (ECMWF) Scheme for Surface Exchanges over Land (CHTESSEL) model and investigate the sensitivity of the simulated turbulent fluxes to these vegetation related parameters. Observed data from 17 FLUXNET towers were used to force and evaluate model simulations with different vegetation parameter configurations. The replacement of the current LAI climatology used by CHTESSEL, by a new high-resolution climatology, representative of the station’s location, has a small impact on the simulated fluxes. Instead, a revision of the root profile considering a uniform root distribution reduces the underestimation of evaporation during water stress conditions. Despite the limitations of using only one model and a limited number of stations, our results highlight the relevance of root distribution in controlling soil moisture stress, which is likely to be applicable to other LSMs.


Sign in / Sign up

Export Citation Format

Share Document