scholarly journals Leaf Area Index Changes Explain GPP Variation across an Amazon Drought Stress Gradient

2019 ◽  
Author(s):  
Sophie Flack-Prain ◽  
Patrick Meir ◽  
Yadvinder Malhi ◽  
Thomas Luke Smallman ◽  
Mathew Williams

Abstract. The capacity of Amazon forests to sequester carbon is threatened by climate change-induced shifts in precipitation patterns. However, the relative importance of plant physiology, ecosystem structure, and trait composition responses in determining variation in GPP, remain largely unquantified, and vary among models. We evaluate the relative importance of key climate constraints to gross primary productivity (GPP), comparing direct plant physiological responses to water availability and indirect structural and trait responses (via changes to leaf area index (LAI), roots and photosynthetic capacity). To separate these factors we combined the Soil-Plant-Atmosphere model with forcing and observational data from seven intensively studied forest plots along an Amazon soil moisture-stress gradient. We also used machine learning to evaluate the relative importance of individual climate factors across sites. Our model experiments showed that variation in LAI was the principal driver of differences in GPP across the gradient, accounting for 33 % of observed variation. Differences in photosynthetic capacity (Vcmax and Jmax) accounted for 21 % of variance, and climate (which included physiological responses) accounted for 16 %. Sensitivity to differences in climate was highest where shallow rooting depth was coupled with high LAI. On sub-annual timescales, the relative importance of LAI in driving GPP increased with soil moisture-stress (R2 = 0.72), whilst the importance of solar radiation decreased (R2 = 0.90). Given the role of LAI in driving GPP across Amazon forests, improved mapping of canopy dynamics is critical, opportunities for which are offered by new satellite-based remote sensing missions such as GEDI, Sentinel and FLEX.

2009 ◽  
Vol 10 (6) ◽  
pp. 1548-1560 ◽  
Author(s):  
Richard J. Ellis ◽  
Christopher M. Taylor ◽  
Graham P. Weedon ◽  
Nicola Gedney ◽  
Douglas B. Clark ◽  
...  

Abstract A critical function of a land surface scheme, used in climate and weather prediction models, is to partition the energy from insolation into sensible and latent heat fluxes. Many use a soil moisture function to control the surface moisture fluxes through the transpiration. The validity and global distribution of the parameters used to calculate this soil moisture stress function are difficult to assess. This work presents a method to map soil moisture stress globally from an earth observation vegetation index and precipitation data, and it compares the resulting distributions with output from the Joint U.K. Land Environment Simulator (JULES) land surface scheme. A number of model runs with different soil and vegetation parameters are compared. These examine the sensitivity of the seasonality of soil moisture stress, within the model, to the parameterization of soil hydraulic properties and the seasonality of leaf area index in the vegetation. It is found that the seasonality of soil moisture within the model is more sensitive to the soil hydraulic properties than the leaf area index. The partitioning of throughfall into evaporation and runoff, in the model, is the dominant factor in determining the timing of soil moisture stress.


2019 ◽  
Vol 16 (22) ◽  
pp. 4463-4484 ◽  
Author(s):  
Sophie Flack-Prain ◽  
Patrick Meir ◽  
Yadvinder Malhi ◽  
Thomas Luke Smallman ◽  
Mathew Williams

Abstract. The capacity of Amazon forests to sequester carbon is threatened by climate-change-induced shifts in precipitation patterns. However, the relative importance of plant physiology, ecosystem structure and trait composition responses in determining variation in gross primary productivity (GPP) remain largely unquantified and vary among models. We evaluate the relative importance of key climate constraints to GPP, comparing direct plant physiological responses to water availability and indirect structural and trait responses (via changes to leaf area index (LAI), roots and photosynthetic capacity). To separate these factors we combined the soil–plant–atmosphere model with forcing and observational data from seven intensively studied forest plots along an Amazon drought stress gradient. We also used machine learning to evaluate the relative importance of individual climate factors across sites. Our model experiments showed that variation in LAI was the principal driver of differences in GPP across the gradient, accounting for 33 % of observed variation. Differences in photosynthetic capacity (Vcmax and Jmax) accounted for 21 % of variance, and climate (which included physiological responses) accounted for 16 %. Sensitivity to differences in climate was highest where a shallow rooting depth was coupled with a high LAI. On sub-annual timescales, the relative importance of LAI in driving GPP increased with drought stress (R2=0.72), coincident with the decreased importance of solar radiation (R2=0.90). Given the role of LAI in driving GPP across Amazon forests, improved mapping of canopy dynamics is critical, opportunities for which are offered by new satellite-based remote sensing missions such as GEDI, Sentinel and FLEX.


2020 ◽  
Vol 12 (13) ◽  
pp. 2148 ◽  
Author(s):  
Adnan Rajib ◽  
I Luk Kim ◽  
Heather E. Golden ◽  
Charles R. Lane ◽  
Sujay V. Kumar ◽  
...  

Traditional watershed modeling often overlooks the role of vegetation dynamics. There is also little quantitative evidence to suggest that increased physical realism of vegetation dynamics in process-based models improves hydrology and water quality predictions simultaneously. In this study, we applied a modified Soil and Water Assessment Tool (SWAT) to quantify the extent of improvements that the assimilation of remotely sensed Leaf Area Index (LAI) would convey to streamflow, soil moisture, and nitrate load simulations across a 16,860 km2 agricultural watershed in the midwestern United States. We modified the SWAT source code to automatically override the model’s built-in semiempirical LAI with spatially distributed and temporally continuous estimates from Moderate Resolution Imaging Spectroradiometer (MODIS). Compared to a “basic” traditional model with limited spatial information, our LAI assimilation model (i) significantly improved daily streamflow simulations during medium-to-low flow conditions, (ii) provided realistic spatial distributions of growing season soil moisture, and (iii) substantially reproduced the long-term observed variability of daily nitrate loads. Further analysis revealed that the overestimation or underestimation of LAI imparted a proportional cascading effect on how the model partitions hydrologic fluxes and nutrient pools. As such, assimilation of MODIS LAI data corrected the model’s LAI overestimation tendency, which led to a proportionally increased rootzone soil moisture and decreased plant nitrogen uptake. With these new findings, our study fills the existing knowledge gap regarding vegetation dynamics in watershed modeling and confirms that assimilation of MODIS LAI data in watershed models can effectively improve both hydrology and water quality predictions.


1984 ◽  
Vol 20 (2) ◽  
pp. 161-170
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe effects of irrigation and spraying of transpiration suppressants on growth and nutrient uptake by spring sorghum (CSH 6) have been investigated. Crop growth, measured by plant-height, leaf area index and dry matter production, and uptake of N, P and K increased with more frequent irrigation and in response to the spraying of transpiration suppressants. Foliar applications of atrazine at 200 g ha−1 and CCC at 300 ml ha−1 proved to be the best in this NW Indian location.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Ronald C. Cordes ◽  
Thomas T. Bauman

Detrimental effects on growth and yield of soybeans [Glycine max(L.) Merr. ‘Amsoy 77′] from density and duration of competition by ivyleaf morningglory [Ipomea hederacea(L.) Jacq. ♯3IPOHE] was evaluated in 1981 and 1982 near West Lafayette, IN. Ivyleaf morningglory was planted at densities of 1 plant per 90, 60, 30, and 15 cm of row in 1981 and 1 plant per 60, 30, 15, and 7.5 cm of row in 1982. Each density of ivyleaf morningglory competed for 22 to 46 days after emergence and the full season in 1981, and for 29 to 60 days after emergence and the full season in 1982. The best indicators of competition effects were leaf area index, plant dry weight, and yield of soybeans. Ivyleaf morningglory was more competitive during the reproductive stage of soybean growth. Photosynthetic irradiance and soil moisture measurements indicated that ivyleaf morningglory does not effectively compete for light or soil moisture. All densities of ivyleaf morningglory could compete with soybeans for 46 and 60 days after emergence in 1981 and 1982, respectively, without reducing soybean yield. Full-season competition from densities of 1 ivyleaf morningglory plant per 15 cm of row significantly reduced soybean yield by 36% in 1981 and 13% in 1982. The magnitude of soybean growth and yield reduction caused by a given density of ivyleaf morningglory was greater when warm, early season temperatures favored rapid weed development.


2020 ◽  
Author(s):  
David Chaparro ◽  
Thomas Jagdhuber ◽  
Dara Entekhabi ◽  
María Piles ◽  
Anke Fluhrer ◽  
...  

<p>Changing climate patterns have increased hydrological extremes in many regions [1]. This impacts water and carbon cycles, potentially modifying vegetation processes and thus terrestrial carbon uptake. It is therefore crucial to understand the relationship between the main water pools linked to vegetation (i.e., soil moisture, plant water storage, and atmospheric water deficit), and how vegetation responds to changes of these pools. Hence, the goal of this research is to understand the water pools and fluxes in the soil-plant-atmosphere continuum (SPAC) and their relationship with vegetation responses.</p><p>Our study spans from April 2015 to March 2019 and is structured in two parts:</p><p>Firstly, relative water content (RWC) is estimated using a multi-sensor approach to monitor water storage in plants. This is at the core of our research approach towards water pool monitoring within SPAC. Here, we will present a RWC dataset derived from gravimetric moisture content (<em>mg</em>) estimates using the method first proposed in [2], and further validated in [3]. This allows retrieving RWC and <em>mg</em> independently from biomass influences. Here, we apply this method using a sensor synergy including (i) vegetation optical depth from SMAP L-band radiometer (L-VOD), (ii) vegetation height (VH) from ICESat-2 Lidar and (iii) vegetation volume fraction (d) from AQUARIUS L-band radar. RWC status and temporal dynamics will be discussed.</p><p>Secondly, water dynamics in the SPAC and their impact on leaf changes are analyzed. We will present a global, time-lag correlation analysis among: (i) the developed RWC maps, (ii) surface soil moisture from SMAP (SM), (iii) vapor pressure deficit (VPD; from MERRA reanalysis [4]), and (iv) leaf area index (LAI; from MODIS [5]). Resulting time-lag and correlation maps, as well as analyses of LAI dynamics as a function of SPAC, will be presented at the conference.</p><p> </p><p>References</p><p>[1] IPCC. (2013). Annex I: Atlas of global and regional climate projections. In: van Oldenborgh, et al. (Eds.) Climate Change 2013: The Physical Science Basis (pp. 1311-1393). Cambridge University Press.</p><p>[2] Fink, A., et al. (2018). Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach. In IGARSS 2018 (pp. 353-356). IEEE.</p><p>[3] Meyer, T., et al. Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth, Remote Sens. 2019, 11(20), 2353</p><p>[4] NASA (2019). Modern-Era Retrospective analysis for Research and Applications, Version 2. Accessed 2020-01-14 from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.</p><p>[5] Myneni, R., et al. (2015). MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. Accessed 2020-01-14 from https://doi.org/10.5067/MODIS/MOD15A2H.006.</p>


Sign in / Sign up

Export Citation Format

Share Document