Upper-Ocean Processes under the Stratus Cloud Deck in the Southeast Pacific Ocean

2010 ◽  
Vol 40 (1) ◽  
pp. 103-120 ◽  
Author(s):  
Yangxing Zheng ◽  
George N. Kiladis ◽  
Toshiaki Shinoda ◽  
E. Joseph Metzger ◽  
Harley E. Hurlburt ◽  
...  

Abstract The annual mean heat budget of the upper ocean beneath the stratocumulus/stratus cloud deck in the southeast Pacific is estimated using Simple Ocean Data Assimilation (SODA) and an eddy-resolving Hybrid Coordinate Ocean Model (HYCOM). Both are compared with estimates based on Woods Hole Oceanographic Institution (WHOI) Improved Meteorological (IMET) buoy observations at 20°S, 85°W. Net surface heat fluxes are positive (warming) over most of the area under the stratus cloud deck. Upper-ocean processes responsible for balancing the surface heat flux are examined by estimating each term in the heat equation. In contrast to surface heat fluxes, geostrophic transport in the upper 50 m causes net cooling in most of the stratus cloud deck region. Ekman transport provides net warming north of the IMET site and net cooling south of the IMET site. Although the eddy heat flux divergence term can be comparable to other terms at a particular location, such as the IMET mooring site, it is negligible for the entire stratus region when area averaged because it is not spatially coherent in the open ocean. Although cold-core eddies are often generated near the coast in the eddy-resolving model, they do not significantly impact the heat budget in the open ocean in the southeast Pacific.

2017 ◽  
Vol 30 (11) ◽  
pp. 4185-4205 ◽  
Author(s):  
Zhuoqi He ◽  
Renguang Wu ◽  
Weiqiang Wang ◽  
Zhiping Wen ◽  
Dongxiao Wang

Abstract The present study employs six surface heat flux datasets and three ocean assimilation products to assess the relative contributions of surface heat fluxes and oceanic processes to the sea surface temperature (SST) change in the tropical oceans. Large differences are identified in the major terms of the heat budget equation. The largest discrepancies among different datasets appear in the contribution of vertical advection. The heat budget is nearly balanced in the shortwave-radiation- and horizontal-advection-dominant cases but not balanced in some of the latent-heat-flux- and vertical-advection-dominant cases. The contributions of surface heat fluxes and ocean advections to the SST tendency display remarkable seasonal and regional dependence. The contribution of surface heat fluxes covers a large geographical area. The oceanic processes dominate the SST tendency in the near-equatorial regions with large values but small spatial scales. In the Pacific and Atlantic Oceans, the SST tendency is governed by the dynamic and thermodynamic processes, respectively, while a wide variety of processes contribute to the SST tendency in the Indian Ocean. Several regions have been selected to illustrate the dominant contributions of individual terms to the SST tendency in different seasons. The seasonality and regionality of the interannual air–sea relationship indicate a physical connection with the mean state.


2011 ◽  
Vol 24 (15) ◽  
pp. 4139-4164 ◽  
Author(s):  
Yangxing Zheng ◽  
Toshiaki Shinoda ◽  
Jia-Lin Lin ◽  
George N. Kiladis

Abstract This study examines systematic biases in sea surface temperature (SST) under the stratus cloud deck in the southeast Pacific Ocean and upper-ocean processes relevant to the SST biases in 19 coupled general circulation models (CGCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The 20 years of simulations from each model are analyzed. Pronounced warm SST biases in a large portion of the southeast Pacific stratus region are found in all models. Processes that could contribute to the SST biases are examined in detail based on the computation of major terms in the upper-ocean heat budget. Negative biases in net surface heat fluxes are evident in most of the models, suggesting that the cause of the warm SST biases in models is not explained by errors in net surface heat fluxes. Biases in heat transport by Ekman currents largely contribute to the warm SST biases both near the coast and the open ocean. In the coastal area, southwestward Ekman currents and upwelling in most models are much weaker than observed owing to weaker alongshore winds, resulting in insufficient advection of cold water from the coast. In the open ocean, warm advection due to Ekman currents is overestimated in models because of the larger meridional temperature gradient, the smaller zonal temperature gradient, and overly weaker Ekman currents.


2014 ◽  
Vol 15 (3) ◽  
pp. 921-937 ◽  
Author(s):  
Donghai Zheng ◽  
Rogier van der Velde ◽  
Zhongbo Su ◽  
Martijn J. Booij ◽  
Arjen Y. Hoekstra ◽  
...  

ABSTRACT Current land surface models still have difficulties with producing reliable surface heat fluxes and skin temperature (Tsfc) estimates for high-altitude regions, which may be addressed via adequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. In this study, the performance of various z0h and z0m schemes developed for the Noah land surface model is assessed for a high-altitude site (3430 m) on the northeastern part of the Tibetan Plateau. Based on the in situ surface heat fluxes and profile measurements of wind and temperature, monthly variations of z0m and diurnal variations of z0h are derived through application of the Monin–Obukhov similarity theory. These derived values together with the measured heat fluxes are utilized to assess the performance of those z0m and z0h schemes for different seasons. The analyses show that the z0m dynamics are related to vegetation dynamics and soil water freeze–thaw state, which are reproduced satisfactorily with current z0m schemes. Further, it is demonstrated that the heat flux simulations are very sensitive to the diurnal variations of z0h. The newly developed z0h schemes all capture, at least over the sparse vegetated surfaces during the winter season, the observed diurnal variability much better than the original one. It should, however, be noted that for the dense vegetated surfaces during the spring and monsoon seasons, not all newly developed schemes perform consistently better than the original one. With the most promising schemes, the Noah simulated sensible heat flux, latent heat flux, Tsfc, and soil temperature improved for the monsoon season by about 29%, 79%, 75%, and 81%, respectively. In addition, the impact of Tsfc calculation and energy balance closure associated with measurement uncertainties on the above findings are discussed, and the selection of the appropriate z0h scheme for applications is addressed.


2006 ◽  
Vol 19 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Xiaoqing Wu ◽  
Stephen Guimond

Abstract Two-dimensional (2D) and three-dimensional (3D) cloud-resolving model (CRM) simulations are conducted to quantify the enhancement of surface sensible and latent heat fluxes by tropical precipitating cloud systems for 20 days (10–30 December 1992) during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The mesoscale enhancement appears to be analogous across both 2D and 3D CRMs, with the enhancement for the sensible heat flux accounting for 17% of the total flux for each model and the enhancement for the latent heat flux representing 18% and 16% of the total flux for 2D and 3D CRMs, respectively. The convection-induced gustiness is mainly responsible for the enhancement observed in each model simulation. The parameterization schemes of the mesoscale enhancement by the gustiness in terms of convective updraft, downdraft, and precipitation, respectively, are examined using each version of the CRM. The scheme utilizing the precipitation was found to yield the most desirable estimations of the mean fluxes with the smallest rms error. The results together with previous findings from other studies suggest that the mesoscale enhancement of surface heat fluxes by the precipitating deep convection is a subgrid process apparent across various CRMs and is imperative to incorporate into general circulation models (GCMs) for improved climate simulation.


2020 ◽  
Author(s):  
Yaoming Ma

<p>The exchange of heat and water vapor between land surface and atmosphere over the Third Pole region (Tibetan Plateau and nearby surrounding region) plays an important role in Asian monsoon, westerlies and the northern hemisphere weather and climate systems. Supported by various agencies in the People’s Republic of China, a Third Pole Environment (TPE) observation and research Platform (TPEORP) is now implementing over the Third Pole region. The background of the establishment of the TPEORP, the establishing and monitoring plan of long-term scale (5-10 years) of it will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface energy fluxes partitioning and the turbulent characteristics will also been shown in this study. Then, the parameterization methodology based on satellite data and the atmospheric boundary layer (ABL) observations has been proposed and tested for deriving regional distribution of net radiation flux, soil heat flux, sensible heat flux and latent heat flux (evapotranspiration (ET)) and their variation trends over the heterogeneous landscape of the Tibetan Plateau (TP) area. To validate the proposed methodology, the ground measured net radiation flux, soil heat flux, sensible heat flux and latent heat flux of the TPEORP are compared to the derived values. The results showed that the derived land surface heat fluxes over the study areas are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface feature. And the estimated land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference in less than 10% in the validation sites. The sensible heat flux has increased slightly and the latent heat flux has decreased from 2001 to 2016 over the TP. It is therefore conclude that the proposed methodology is successful for the retrieval of land surface heat fluxes and ET over heterogeneous landscape of the TP area. Further improvement of the methodology and its applying field over the whole Third Pole region and Pan-Third Pole region were also discussed.</p>


2011 ◽  
Vol 11 (7) ◽  
pp. 19617-19638 ◽  
Author(s):  
Y. Ma ◽  
L. Zhong ◽  
B. Wang ◽  
W. Ma ◽  
X. Chen ◽  
...  

Abstract. In this study, a parameterization methodology based on MODIS (Moderate Resolution Imaging Spectroradiometer) and in-situ data is proposed and tested for deriving the regional surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous landscape. As a case study, the methodology was applied to the Tibetan Plateau area. Four images of MODIS data (30 January 2007, 15 April 2007, 1 August 2007 and 25 October 2007) were used in this study for the comparison among winter, spring, summer and autumn. The derived results were also validated by using the "ground truth" measured in the stations of the Tibetan Observation and Research Platform (TORP). The results show that the derived surface variables (surface reflectance and surface temperature) and surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) in four different seasons over the Tibetan Plateau area are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface features over the Tibetan Plateau. Also, the estimated land surface variables and surface heat fluxes are in good agreement with the ground measurements, and all their absolute percent difference (APD) is less than 10 % in the validation sites. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface variables and surface heat fluxes using the MODIS and in-situ data over the Tibetan Plateau area. The shortage and further improvement of the methodology were also discussed.


2009 ◽  
Vol 6 (3) ◽  
pp. 4619-4635 ◽  
Author(s):  
W. Ma ◽  
Y. Ma ◽  
Z. Hu ◽  
B. Su ◽  
J. Wang ◽  
...  

Abstract. Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.


1997 ◽  
Vol 25 ◽  
pp. 193-197 ◽  
Author(s):  
T. E. Arbetter ◽  
J. A. Curry ◽  
M. M. Holland ◽  
J. A. Maslanik

There are currently a variety of one- and two-dimensional sea-ice models being used for climate simulations and sensitivity studies. Though all the models can be timed to simulate current-day conditions to some degree of accuracy, the responses of each model to perturbations in forcing from the atmosphere or ocean are different. Thus, climate-change prediction depends on the choice of sea-ice model. In this study, the sensitivities of various sea-ice models to external heat-flux perturbations are examined in a systematic manner. Starting from similar baseline annual thicknesses, each model is subjected to an applied heat-flux perturbation to assess icemelt. Separate experiments are conducted to compare the response of each model to heat fluxes applied at the atmospheric and the oceanic interfaces. It is found that the magnitude of the heat-flux perturbation required to melt ice varies greatly among different models, with the largest difference arising between models that include ice dynamics vs those that do not. Most models show an asymmetry in the response to heat-flux perturbations applied at the top and bottom surfaces of the ice. This study has implications for the choice of sea-ice models used for climate-change simulations. It also gives insight to the accuracy required for observations and model simulations of the surface heat fluxes.


2019 ◽  
Vol 11 (24) ◽  
pp. 2899
Author(s):  
Nan Ge ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Meilin Cheng ◽  
Xian Wang ◽  
...  

Land surface heat fluxes consist of the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux. The estimation of these fluxes is essential to the study of energy transfer in land–atmosphere systems. In this paper, Landsat 7 ETM+ SLC-on data were applied to estimate the land surface heat fluxes on the northern Tibetan Plateau using the SEBS (surface energy balance system) model, in combination with the calculation of field measurements at CAMP/Tibet (Coordinated Enhanced Observing Period (CEOP) Asia–Australia Monsoon Project on the Tibetan Plateau) automatic weather stations based on the combinatory method (CM) for comparison. The root mean square errors between the satellite estimations and the CM calculations for the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux were 49.2 W/m2, 46.3 W/m2, 68.2 W/m2, and 54.9 W/m2, respectively. The results reveal that land surface heat fluxes all present significant seasonal variability. Apart from the sensible heat flux, the satellite-estimated net radiation flux, soil heat flux, and latent heat flux exhibited a trend of summer > spring > autumn > winter. In summer, spring, autumn, and winter, respectively, the median values of the net radiation flux (631.8 W/m2, 583.0 W/m2, 404.4 W/m2, 314.3 W/m2), soil heat flux (40.9 W/m2, 37.9 W/m2, 26.1 W/m2, 20.5 W/m2), sensible heat flux (252.7 W/m2, 219.5 W/m2, 221.4 W/m2, 204.8 W/m2), and latent heat flux (320.1 W/m2, 298.3 W/m2, 142.3 W/m2, 75.5 W/m2) exhibited distinct seasonal diversity. From November to April, the in situ sensible heat flux is higher than the latent heat flux; the opposite is true between June and September, leaving May and October as transitional months. For water bodies, alpine meadows and other main underlying surface types, sensible and latent heat flux generally present contrasting and complementary spatial distributions. Due to the 15–60 m resolution of the Landsat 7 ETM+ data, the distribution of land surface heat fluxes can be used as an indicator of complex underlying surface types over the northern Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document