The impact of large-scale reclamation on hydro-dynamic environment–A case study of Xinghua Bay

2015 ◽  
Vol 15 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Jing Yu ◽  
Xianwen Bao ◽  
Yang Ding ◽  
Wei Zhang ◽  
Lingling Zhou
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2018 ◽  
Vol 42 (3) ◽  
pp. 358-385 ◽  
Author(s):  
Natalie Todak ◽  
Michael D. White ◽  
Lisa M. Dario ◽  
Andrea R. Borrego

Objective: To provide guidance to criminologists for conducting experiments in light of two common discouraging factors: the belief that they are overly time-consuming and the belief that they can compromise the ethical principles of human subjects’ research. Method: A case study approach is used, based on a large-scale randomized controlled trial experiment in which we exposed participants to a 5-s TASER shock, to describe how the authors overcame ethical, methodological, and logistical difficulties. Results: We derive four pieces of advice from our experiences carrying out this experimental trial: (1) know your limitations, (2) employ pilot testing, (3) remain flexible and patient, and (4) “hold the line” to maintain the integrity of the research and the safety of human subjects. Conclusions: Criminologists have an obligation to provide the best possible evidence regarding the impact and consequences of criminal justice practices and programs. Experiments, considered by many to be the gold standard of empirical research methodologies, should be used whenever possible in order to fulfill this obligation.


2008 ◽  
Vol 22 (5) ◽  
pp. 526-549 ◽  
Author(s):  
Milena M. Parent ◽  
Benoit Séguin

The purpose of this study was to develop a model of brand creation for one-off large-scale sporting events. A case study of the 2005 Montreal FINA (Fédération Internationale de Natation) World Championships highlighted the importance of the leadership group (which must include individuals with political/networking, business/management, and sport/event skills), the context, and the nature of the event for creating the event’s brand. The importance of each aspect is suggested to vary depending on the situation. For example, the lack of an initial event brand will result in the leadership group having the greatest impact on the event’s brand creation process. Findings also highlighted differing communication paths for internal and external stakeholders. Thus, this study contributes to the literature by focusing on brand creation and its related factors instead of the management and outcomes of a brand.


2018 ◽  
Vol 64 (247) ◽  
pp. 811-821 ◽  
Author(s):  
STEFAN LIPPL ◽  
SAURABH VIJAY ◽  
MATTHIAS BRAUN

ABSTRACTDespite their importance for mass-balance estimates and the progress in techniques based on optical and thermal satellite imagery, the mapping of debris-covered glacier boundaries remains a challenging task. Manual corrections hamper regular updates. In this study, we present an automatic approach to delineate glacier outlines using interferometrically derived synthetic aperture radar (InSAR) coherence, slope and morphological operations. InSAR coherence detects the temporally decorrelated surface (e.g. glacial extent) irrespective of its surface type and separates it from the highly coherent surrounding areas. We tested the impact of different processing settings, for example resolution, coherence window size and topographic phase removal, on the quality of the generated outlines. We found minor influence of the topographic phase, but a combination of strong multi-looking during interferogram generation and additional averaging during coherence estimation strongly deteriorated the coherence at the glacier edges. We analysed the performance of X-, C- and L- band radar data. The C-band Sentinel-1 data outlined the glacier boundary with the least misclassifications and a type II error of 0.47% compared with Global Land Ice Measurements from Space inventory data. Our study shows the potential of the Sentinel-1 mission together with our automatic processing chain to provide regular updates for land-terminating glaciers on a large scale.


2021 ◽  
Author(s):  
Taha Sezer ◽  
Abubakar Kawuwa Sani ◽  
Rao Martand Singh ◽  
David P. Boon

<p>Groundwater heat pumps (GWHP) are an environmentally friendly and highly efficient low carbon heating technology that can benefit from low-temperature groundwater sources lying in the shallow depths to provide heating and cooling to buildings. However, the utilisation of groundwater for heating and cooling, especially in large scale (district level), can create a thermal plume around injection wells. If a plume reaches the production well this may result in a decrease in the system performance or even failure in the long-term operation. This research aims to investigate the impact of GWHP usage in district-level heating by using a numerical approach and considering a GWHP system being constructed in Colchester, UK as a case study, which will be the largest GWHP system in the UK. Transient 3D simulations have been performed pre-construction to investigate the long-term effect of injecting water at 5°C, into a chalk bedrock aquifer. Modelling suggests a thermal plume develops but does not reach the production wells after 10 years of operation. The model result can be attributed to the low hydraulic gradient, assumed lack of interconnecting fractures, and large (>500m) spacing between the production and injection wells. Model validation may be possible after a period operational monitoring.</p>


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2818
Author(s):  
Yujun Xu ◽  
Liqiang Ma ◽  
Yihe Yu

To better protect the ecological environment during large scale underground coal mining operations in the northwest of China, the authors have proposed a water-conservation coal mining (WCCM) method. This case study demonstrated the successful application of WCCM in the Yu-Shen mining area. Firstly, by using the analytic hierarchy process (AHP), the influencing factors of WCCM were identified and the identification model with a multilevel structure was developed, to determine the weight of each influencing factor. Based on this, the five maps: overburden thickness contour, stratigraphic structure map, water-rich zoning map of aquifers, aquiclude thickness contour and coal seam thickness contour, were analyzed and determined. This formed the basis for studying WCCM in the mining area. Using the geological conditions of the Yu-Shen mining area, the features of caved zone, water conductive fractured zone (WCFZ) and protective zone were studied. The equations for calculating the height of the “three zones” were proposed. Considering the hydrogeological condition of Yu-Shen mining area, the criteria were put forward to evaluate the impact of coal mining on groundwater, which were then used to determine the distribution of different impact levels. Using strata control theory, the mechanism and applicability of WCCM methods, including height-restricted mining, (partial) backfill mining and narrow strip mining, together with the applicable zone of these methods, were analyzed and identified. Under the guidance of “two zoning” (zoning based on coal mining’s impact level on groundwater and zoning based on applicability of WCCM methods), the WCCM practice was carried out in Yu-Shen mining area. The research findings will provide theoretical and practical instruction for the WCCM in the northwest mining area of China, which is important to reduce the impact of mining on surface and groundwater.


Author(s):  
Ashwin P. Gurnani ◽  
Kemper Lewis

The design of large scale complex engineering systems requires interaction and communication between multiple disciplines and decentralized subsystems. One common fundamental assumption in decentralized design is that the individual subsystems only exchange design variable information and do not share objective functions or gradients. This is because the decentralized subsystems can either not share this information due to geographical constraints or choose not to share it due to corporate secrecy issues. Game theory has been used to model the interactions between distributed design subsystems and predict convergence and equilibrium solutions. These game theoretic models assume that designers make perfectly rational decisions by selecting solutions from their Rational Reaction Set (RRS), resulting in a Nash Equilibrium solution. However, empirical studies reject the claim that decision makers always make rational choices and the concept of Bounded Rationality is used to explain such behavior. In this paper, a framework is proposed that uses the idea of bounded rationality in conjunction with set-based design, metamodeling and multiobjective optimization techniques to improve solutions for convergent decentralized design problems. Through the use of this framework, entitled Modified Approximation-based Decentralized Design (MADD) framework, convergent decentralized design problems converge to solutions that are superior to the Nash equilibrium. A two subsystem mathematical problem is used as case study and simulation techniques are used to study the impact of the framework parameters on the final solution. The discipline specific objective functions within the case study problem are unconstrained and continuous — however, the implementation of the MADD framework is not restricted to such problems.


2019 ◽  
Vol 112 ◽  
pp. 02011
Author(s):  
Cristian-Gabriel Alionte ◽  
Daniel-Constantin Comeaga

The importance of renewable energy and especially of eolian systems is growing. For this reason, we propose the investigation of an important pollutant - the noise, which has become so important that European Commission and European Parliament introduced Directive 2002/49/CE relating to the assessment and management of environmental noise. So far, priority has been given to very large-scale systems connected to national energy systems, wind farms whose highly variable output power could be regulated by large power systems. Nowadays, with the development of small storage capacities, it is feasible to install small power wind turbines in cities of up to 10,000 inhabitants too. As a case study, we propose a simulation for a rural locality where individual wind units could be used. This specific case study is interesting because it provides a new perspective of the impact of noise on the quality of life when the use of this type of system is implemented on a large scale. This option, of distributed and small power wind turbine, can be implemented in the future as an alternative or an adding to the common systems.


2010 ◽  
Vol 04 (02) ◽  
pp. 239-283 ◽  
Author(s):  
ELENA SIMPERL

The ability to efficiently and effectively reuse ontologies is commonly acknowledged to play a crucial role in the large scale dissemination of ontologies and ontology-driven technology, being thus a pre-requisite for the ongoing realization of the Semantic Web. In this article, we give an account of ontology reuse from a process point of view. We present a methodology that can be utilized to systematize and monitor ontology engineering processes in scenarios reusing available ontological knowledge in the context of a particular application. Notably, and by contrast to existing approaches in this field, our aim is to provide means to overcome the poor reusability of existing resources — rather than to solve the more general issue of building new, more reusable knowledge components. To do so we investigate the impact of the application context of an ontology — in terms of tasks this ontology has been created for and will be utilized in — has on the feasibility of a reuse-oriented ontology development strategy and provide guidelines that take these aspects into account. The applicability of the methodology is demonstrated through a case study performed in collaboration with an international eRecruitment solution provider.


2010 ◽  
Vol 14 (18) ◽  
pp. 1-25 ◽  
Author(s):  
Sandra I. Saad ◽  
Humberto R. da Rocha ◽  
Maria A. F. Silva Dias ◽  
Rafael Rosolem

Abstract The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below ∼0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km2. On the other hand, in the patches aligned in the opposite direction (north–south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km2. The authors’ estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.


Sign in / Sign up

Export Citation Format

Share Document