Numerical Modelling of a District Scale Groundwater Heat Pump Operation: Case Study from Colchester, UK

Author(s):  
Taha Sezer ◽  
Abubakar Kawuwa Sani ◽  
Rao Martand Singh ◽  
David P. Boon

<p>Groundwater heat pumps (GWHP) are an environmentally friendly and highly efficient low carbon heating technology that can benefit from low-temperature groundwater sources lying in the shallow depths to provide heating and cooling to buildings. However, the utilisation of groundwater for heating and cooling, especially in large scale (district level), can create a thermal plume around injection wells. If a plume reaches the production well this may result in a decrease in the system performance or even failure in the long-term operation. This research aims to investigate the impact of GWHP usage in district-level heating by using a numerical approach and considering a GWHP system being constructed in Colchester, UK as a case study, which will be the largest GWHP system in the UK. Transient 3D simulations have been performed pre-construction to investigate the long-term effect of injecting water at 5°C, into a chalk bedrock aquifer. Modelling suggests a thermal plume develops but does not reach the production wells after 10 years of operation. The model result can be attributed to the low hydraulic gradient, assumed lack of interconnecting fractures, and large (>500m) spacing between the production and injection wells. Model validation may be possible after a period operational monitoring.</p>

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Christopher Gradwohl ◽  
Vesna Dimitrievska ◽  
Federico Pittino ◽  
Wolfgang Muehleisen ◽  
András Montvay ◽  
...  

Photovoltaic (PV) technology allows large-scale investments in a renewable power-generating system at a competitive levelized cost of electricity (LCOE) and with a low environmental impact. Large-scale PV installations operate in a highly competitive market environment where even small performance losses have a high impact on profit margins. Therefore, operation at maximum performance is the key for long-term profitability. This can be achieved by advanced performance monitoring and instant or gradual failure detection methodologies. We present in this paper a combined approach on model-based fault detection by means of physical and statistical models and failure diagnosis based on physics of failure. Both approaches contribute to optimized PV plant operation and maintenance based on typically available supervisory control and data acquisition (SCADA) data. The failure detection and diagnosis capabilities were demonstrated in a case study based on six years of SCADA data from a PV plant in Slovenia. In this case study, underperforming values of the inverters of the PV plant were reliably detected and possible root causes were identified. Our work has led us to conclude that the combined approach can contribute to an efficient and long-term operation of photovoltaic power plants with a maximum energy yield and can be applied to the monitoring of photovoltaic plants.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Yam Nath Paudel ◽  
Efthalia Angelopoulou ◽  
Bhupendra Raj Giri ◽  
Christina Piperi ◽  
Iekhsan Othman ◽  
...  

: COVID-19 has emerged as a devastating pandemic of the century that the current generations have ever experienced. The COVID-19 pandemic has infected more than 12 million people around the globe and 0.5 million people have succumbed to death. Due to the lack of effective vaccines against the COVID-19, several nations throughout the globe has imposed a lock-down as a preventive measure to lower the spread of COVID-19 infection. As a result of lock-down most of the universities and research institutes has witnessed a long pause in basic science research ever. Much has been talked about the long-term impact of COVID-19 in economy, tourism, public health, small and large-scale business of several kind. However, the long-term implication of these research lab shutdown and its impact in the basic science research has not been much focused. Herein, we provide a perspective that portrays a common problem of all the basic science researchers throughout the globe and its long-term consequences.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
D Panatto ◽  
P Landa ◽  
D Amicizia ◽  
P L Lai ◽  
E Lecini ◽  
...  

Abstract Background Invasive disease due to Neisseria meningitidis (Nm) is a serious public health problem even in developed countries, owing to its high lethality rate (8-15%) and the invalidating sequelae suffered by many (up to 60%) survivors. As the microorganism is transmitted via the airborne route, the only available weapon in the fight against Nm invasive disease is vaccination. Our aim was to carry out an HTA to evaluate the costs and benefits of anti-meningococcal B (MenB) vaccination with Trumenba® in adolescents in Italy, while also considering the impact of this new vaccination strategy on organizational and ethics aspects. Methods A lifetime Markov model was developed. MenB vaccination with the two-dose schedule of Trumenba® in adolescents was compared with 'non-vaccination'. Two perspectives were considered: the National Health Service (NHS) and society. Three disease phases were defined: acute, post-acute and long-term. Epidemiological, economic and health utilities data were taken from Italian and international literature. The analysis was conducted by means of Microsoft Excel 2010®. Results Our study indicated that vaccinating adolescents (11th year of life) with Trumenba® was cost-effective with an ICER = € 7,912/QALY from the NHS perspective and € 7,758/QALY from the perspective of society. Vaccinating adolescents reduces the number of cases of disease due to meningococcus B in one of the periods of highest incidence of the disease, resulting in significant economic and health savings. Conclusions This is the first study to evaluate the overall impact of free MenB vaccination in adolescents both in Italy and in the international setting. Although cases of invasive disease due to meningococcus B are few, if the overall impact of the disease is adequately considered, it becomes clear that including anti-meningococcal B vaccination into the immunization program for adolescents is strongly recommended from the health and economic standpoints. Key messages Free, large-scale MenB vaccination is key to strengthening the global fight against invasive meningococcal disease. Anti-meningococcal B vaccination in adolescents is a cost-effective health opportunity.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Harish Gupta ◽  
S. Kiran Kumar Reddy ◽  
Mounika Chiluka ◽  
Vamshikrishna Gandla

AbstractIn this study, we demonstrate the impact of the construction of a mega-dam on the nutrient export regime of a large tropical river into the Arabian Sea. Long-term (11 years) fortnight nutrient parameters, upstream and downstream to Sardar Sarovar (SS) Dam, were examined to determine the periodical change in nutrient fluxes from the Narmada River, India. During this 11-year period, the average discharge of the Narmada River upstream to Rajghat (35.3 km3 year−1) was higher than that of downstream at Garudeshwar (33.9 km3 year−1). However, during the same period, the suspended sediment load was reduced by 21 million tons (MT) from 37.9 MT at Rajghat to 16.7 MT at Garudeshwar. Similarly, mean concentrations of dissolved silica (DSi) reduced from 470 (upstream) to 214 µM (downstream), dissolved inorganic phosphate (DIP) from 0.84 to 0.38 µM, and dissolved inorganic nitrogen (DIN) from 43 to 1.5 µM. It means that about 54%, 55%, and 96% flux of DSi, DIP, and DIN retained behind the dam, respectively. The estimated denitrification rate (80,000 kg N km−2 year−1) for the reservoir is significantly higher than N removal by lentic systems, globally. We hypothesize that processes such as biological uptake and denitrification under anoxic conditions could be a key reason for the significant loss of nutrients, particularly of DIN. Finally, we anticipated that a decline in DIN fluxes (by 1.13 × 109 mol year−1) from the Narmada River to the Arabian Sea might reduce the atmospheric CO2 fixation by 7.46 × 109 mol year−1.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 855
Author(s):  
Mark W. Brown

The forest industry tends to plan, and model transportation costs based on the potential payload benefits of increased legal gross vehicle weight (GVW) by deploying different configurations, while payload benefits of a configuration can be significantly influenced by the vehicle design tare weight. Through this research the relative benefit of increased legal GVW of different configurations is compared across Australia over a 13-year period from 2006 to 2019, by examining data collected post operation across multiple operations. This approach is intended to offer realistic insight to real operations not influenced by observation and thus reflect long-term operating behaviour. The inclusion of the three most common configuration classes in Australian forestry over a 13-year period has also allowed the exploration of load management between configurations and potential trends over time. When considering the legal GVW and the tare weight impacts across the fleets, the semi-trailer has an 8 t payload disadvantage compared to B-Doubles and 19.6 t disadvantage compared to road trains.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 330
Author(s):  
Bryan A. Oakley

Napatree Point, an isolated barrier in southern Rhode Island, provides a case study of barrier spit migration via storm driven overwash and washover fan migration. Documented shoreline changes using historical surveys and vertical aerial photographs show that the barrier had little in the way of net change in position between 1883 and 1939, including the impact of the 1938 hurricane. The barrier retreated rapidly between 1945 and 1975, driven by both tropical and extra-tropical storms. The shoreline position has been largely static since 1975. The removal of the foredune during the 1938 hurricane facilitated landward shoreline migration in subsequent lower intensity storms. Dune recovery following the 1962 Ash Wednesday storm has been allowed due to limited overwash and barrier migration over the last several decades. Shoreline change rates during the period from 1945–1975 were more than double the rate of shoreline change between 1939 and 2014 and triple the rate between 1883 and 2014, exceeding the positional uncertainty of these shoreline pairs. The long-term shoreline change rates used to calculate coastal setbacks in Rhode Island likely underestimate the potential for rapid shoreline retreat over shorter time periods, particularly in a cluster of storm activity. While sea-level rise has increased since 1975, the barrier has not migrated, highlighting the importance of storms in barrier migration.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2021 ◽  
Vol 13 (14) ◽  
pp. 7906
Author(s):  
Nikola Medová ◽  
Lucie Macková ◽  
Jaromir Harmacek

This paper focuses on the dynamic of the recent upheaval in the tourism and hospitality sector due to the COVID-19 epidemic in Greece and Santorini island. It uses the case study of a country one-fourth of whose GDP consists of tourism. We compare the available statistical data showing the change in variables in the previous years with 2020 and look into the new challenges and opportunities posed by the drop in the numbers of visitors and flights. We focus mainly on the economic and social impact on the destination and possible future scenarios for further development in the area. Data show a significant effect of the pandemic on multiple variables, such as the long-term trend of the importance of tourism sector in GDP in Greece, the number of flights and visitors to Greece and Santorini island, and the contribution of tourism and travel to GDP. Based on the available data, we also construct three foresight scenarios that describe the possible futures for Santorini island in terms of the pandemic evolution. These scenarios may help various stakeholders and policymakers to be better prepared for different developments that may appear.


Author(s):  
Arndt Wiessner ◽  
Jochen A. Müller ◽  
Peter Kuschk ◽  
Uwe Kappelmeyer ◽  
Matthias Kästner ◽  
...  

The large scale of the contamination by the former carbo-chemical industry in Germany requires new and often interdisciplinary approaches for performing an economically sustainable remediation. For example, a highly toxic and dark-colored phenolic wastewater from a lignite pyrolysis factory was filled into a former open-cast pit, forming a large wastewater disposal pond. This caused an extensive environmental pollution, calling for an ecologically and economically acceptable strategy for remediation. Laboratory-scale investigations and pilot-scale tests were carried out. The result was the development of a strategy for an implementation of full-scale enhanced in situ natural attenuation on the basis of separate habitats in a meromictic pond. Long-term monitoring of the chemical and biological dynamics of the pond demonstrates the metamorphosis of a former highly polluted industrial waste deposition into a nature-integrated ecosystem with reduced danger for the environment, and confirmed the strategy for the chosen remediation management.


Sign in / Sign up

Export Citation Format

Share Document