scholarly journals Stochastic Parameterization Schemes for Use in Realistic Climate Models

2011 ◽  
Vol 68 (2) ◽  
pp. 284-299 ◽  
Author(s):  
Joel Culina ◽  
Sergey Kravtsov ◽  
Adam H. Monahan

Abstract Stochastic parameterizations of fast-evolving, subgrid-scale processes are increasingly being used in a range of models from conceptual models to general circulation models. However, stochastic terms are generally included in an ad hoc fashion. In this study, a systematic method—“Hasselmann’s method”—of stochastic parameterization is developed through the direct application of rigorously justified limit theorems that predict the effective slow dynamics in systems with coupled slow and fast variables. The multiple Hasselmann models form a hierarchy of models ordered by the time scales over which they are expected to provide good approximations to the slowly evolving variables. Adaptable, efficient algorithms for integrating these reduced models are developed that require minimal changes to the unreduced model. Hasselmann’s method is tested on an O(10 000)-dimensional (planetary and synoptic scale) quasigeostrophic model of atmospheric low-frequency variability. Low-dimensional deterministic and stochastic models in the planetary-scale modes alone are derived, which accurately generate the statistics of the corresponding modes of the unreduced model, including the statistical signatures of jet regime behavior. It is shown that deterministic nonlinearity through slow forcing averaged with respect to the fast modes distribution dominates over multiplicative noise in generating the regime behavior.

Author(s):  
Andrew J Majda ◽  
Christian Franzke ◽  
Boualem Khouider

Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here.


2011 ◽  
Vol 24 (14) ◽  
pp. 3609-3623 ◽  
Author(s):  
Fiona Johnson ◽  
Seth Westra ◽  
Ashish Sharma ◽  
Andrew J. Pitman

Abstract Climate change impact studies for water resource applications, such as the development of projections of reservoir yields or the assessment of likely frequency and amplitude of drought under a future climate, require that the year-to-year persistence in a range of hydrological variables such as catchment average rainfall be properly represented. This persistence is often attributable to low-frequency variability in the global sea surface temperature (SST) field and other large-scale climate variables through a complex sequence of teleconnections. To evaluate the capacity of general circulation models (GCMs) to accurately represent this low-frequency variability, a set of wavelet-based skill measures has been developed to compare GCM performance in representing interannual variability with the observed global SST data, as well as to assess the extent to which this variability is imparted in precipitation and surface pressure anomaly fields. A validation of the derived skill measures is performed using GCM precipitation as an input in a reservoir storage context, with the accuracy of reservoir storage estimates shown to be improved by using GCM outputs that correctly represent the observed low-frequency variability. Significant differences in the performance of different GCMs is demonstrated, suggesting that judicious selection of models is required if the climate impact assessment is sensitive to low-frequency variability. The two GCMs that were found to exhibit the most appropriate representation of global low-frequency variability for individual variables assessed were the Istituto Nazionale di Geofisica e Vulcanologia (INGV) ECHAM4 and L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4); when considering all three variables, the Max Planck Institute (MPI) ECHAM5 performed well. Importantly, models that represented interannual variability well for SST also performed well for the other two variables, while models that performed poorly for SST also had consistently low skill across the remaining variables.


2008 ◽  
Vol 136 (4) ◽  
pp. 1523-1536 ◽  
Author(s):  
Edwin P. Gerber ◽  
Sergey Voronin ◽  
Lorenzo M. Polvani

Abstract A new diagnostic for measuring the ability of atmospheric models to reproduce realistic low-frequency variability is introduced in the context of Held and Suarez’s 1994 proposal for comparing the dynamics of different general circulation models. A simple procedure to compute τ, the e-folding time scale of the annular mode autocorrelation function, is presented. This quantity concisely quantifies the strength of low-frequency variability in a model and is easy to compute in practice. The sensitivity of τ to model numerics is then studied for two dry primitive equation models driven with the Held–Suarez forcings: one pseudospectral and the other finite volume. For both models, τ is found to be unrealistically large when the horizontal resolutions are low, such as those that are often used in studies in which long integrations are needed to analyze model variability on low frequencies. More surprising is that it is found that, for the pseudospectral model, τ is particularly sensitive to vertical resolution, especially with a triangular truncation at wavenumber 42 (a very common resolution choice). At sufficiently high resolution, the annular mode autocorrelation time scale τ in both models appears to converge around values of 20–25 days, suggesting the existence of an intrinsic time scale at which the extratropical jet vacillates in the Held and Suarez system. The importance of τ for computing the correct response of a model to climate change is explicitly demonstrated by perturbing the pseudospectral model with simple torques. The amplitude of the model’s response to external forcing increases as τ increases, as suggested by the fluctuation–dissipation theorem.


Author(s):  
Bruce P. Hayden

Vegetation controls aspects of climate at all scales. These controls operate through fluxes of mass (water vapour, particulates, trace gases, condensation nuclei, and ice nuclei) and energy (latent and sensible heat, radiative exchanges, and momentum dissipation) between the biosphere and the atmosphere. The role these fluxes play in controlling minimum and maximum temperature, temperature range, rainfall, and precipitation processes are detailed. On the hemispheric scale, the importance of evapotranspiration, vegetation surface roughness, and vegetation albedo in the current generation of atmospheric general circulation models is reviewed. Finally, I assess at the planetary scale the global climate effects of biogenic emissions that are well mixed throughout the troposphere. I show that daily maximum and minimum temperatures are, in part, controlled by the emission of non–methane hydrocarbons and transpired water vapour. In many regions, a substantial fraction of the rainfall arises from upstream evapotranspiration rather than from oceanic evaporation. Biosphere evapotranspiration, surface roughness, and albedo are key controls in the general circulation of the atmosphere: climate models that lack adequate specifications for these biosphere attributes fail. The biosphere modulates climate at all scales.


2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


2017 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice-sheet expansion and global cooling during the interval ~ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry and vegetation. Additionally, Antarctic ice volume and geometry, sea-level and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2009 ◽  
Vol 9 (21) ◽  
pp. 8493-8501 ◽  
Author(s):  
J. Quaas ◽  
O. Boucher ◽  
A. Jones ◽  
G. P. Weedon ◽  
J. Kieser ◽  
...  

Abstract. A weekly cycle in aerosol pollution and some meteorological quantities is observed over Europe. In the present study we exploit this effect to analyse aerosol-cloud-radiation interactions. A weekly cycle is imposed on anthropogenic emissions in two general circulation models that include parameterizations of aerosol processes and cloud microphysics. It is found that the simulated weekly cycles in sulfur dioxide, sulfate, and aerosol optical depth in both models agree reasonably well with those observed indicating model skill in simulating the aerosol cycle. A distinct weekly cycle in cloud droplet number concentration is demonstrated in both observations and models. For other variables, such as cloud liquid water path, cloud cover, top-of-the-atmosphere radiation fluxes, precipitation, and surface temperature, large variability and contradictory results between observations, model simulations, and model control simulations without a weekly cycle in emissions prevent us from reaching any firm conclusions about the potential aerosol impact on meteorology or the realism of the modelled second aerosol indirect effects.


2021 ◽  
Author(s):  
Gunter Stober ◽  
Ales Kuchar ◽  
Dimitry Pokhotelov ◽  
Huixin Liu ◽  
Han-Li Liu ◽  
...  

Abstract. Long-term and continuous observations of mesospheric/lower thermospheric winds are rare, but they are important to investigate climatological changes at these altitudes on time scales of several years, covering a solar cycle and longer. Such long time series are a natural heritage of the mesosphere/lower thermosphere climate, and they are valuable to compare climate models or long term runs of general circulation models (GCMs). Here we present a climatological comparison of wind observations from six meteor radars at two conjugate latitudes to validate the corresponding mean winds and atmospheric diurnal and semidiurnal tides from three GCMs, namely Ground-to-Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Community Climate Model Extension (Specified Dynamics) (WACCM-X(SD)) and Upper Atmosphere ICOsahedral Non-hydrostatic (UA-ICON) model. Our results indicate that there are interhemispheric differences in the seasonal characteristics of the diurnal and semidiurnal tide. There also are some differences in the mean wind climatologies of the models and the observations. Our results indicate that GAIA shows a reasonable agreement with the meteor radar observations during the winter season, whereas WACCM-X(SD) shows a better agreement with the radars for the hemispheric zonal summer wind reversal, which is more consistent with the meteor radar observations. The free running UA-ICON tends to show similar winds and tides compared to WACCM-X(SD).


Sign in / Sign up

Export Citation Format

Share Document