scholarly journals The Hydrology and Hydrometeorology of Flooding in the Delaware River Basin

2010 ◽  
Vol 11 (4) ◽  
pp. 841-859 ◽  
Author(s):  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Gabriele Villarini ◽  
Witold F. Krajewski

Abstract Extreme floods in the Delaware River basin are examined through analyses of a sequence of record and near-record floods during September 2004, April 2005, and June 2006. The three flood episodes reflect three principal flood-generating mechanisms in the eastern United States: tropical cyclones (September 2004); late winter–early spring extratropical systems (April 2005); and warm-season convective systems (June 2006). Extreme flooding in the Delaware River basin is the product of heavy rainfall and runoff from high-gradient portions of the watershed. Orographic precipitation mechanisms play a central role in the extreme flood climatology of the Delaware River basin and, more generally, for the eastern United States. Extreme flooding for the 2004–06 events was produced in large measure from forested portions of the watershed. Analyses of flood frequency based on annual flood peak observations from U.S. Geological Survey (USGS) stream gauging stations with “long” records illustrate the striking heterogeneity of flood response over the region, the important role of landfalling tropical cyclones for the upper tail of flood peak distributions, and the prevalence of nonstationarities in flood peak records. Analyses show that changepoints are a more common source of nonstationarity than linear time trends. Regulation by dams and reservoirs plays an important role in determining changepoints, but the downstream effects of reservoirs on flood distributions are limited.

2017 ◽  
Vol 18 (4) ◽  
pp. 957-976 ◽  
Author(s):  
Ping Lu ◽  
James A. Smith ◽  
Ning Lin

Abstract A framework to characterize the distribution of flood magnitudes over large river networks is developed using the Delaware River basin in the northeastern United States as a principal study region. Flood magnitudes are characterized by the flood index, which is defined as the ratio of the flood peak for a flood event to the historical 10-yr flood magnitude. Event flood peaks are computed continuously over the drainage network using a distributed hydrologic model, CUENCAS, with high-resolution radar rainfall fields as the principal forcing. The historical 10-yr flood is calculated based on scaling relationships between the 10-yr flood and drainage area. Summary statistics for characterizing the probability distribution and spatial correlation of flood magnitudes over the drainage network are developed based on the flood index. This framework is applied to four flood events in the Delaware River basin that reflect the principal flood-generating mechanisms in the eastern United States: landfalling tropical cyclones (Hurricane Ivan in September 2004 and Hurricane Irene in August 2011), late winter/early spring extratropical systems (April 2005), and warm season convective systems (June 2006). The framework can be utilized to characterize the spatial distribution of floods, most notably for floods caused by landfalling tropical cyclones, which play an important role in controlling the upper tail of flood peak magnitudes over much of the eastern United States.


2011 ◽  
Vol 12 (2) ◽  
pp. 294-309 ◽  
Author(s):  
James A. Smith ◽  
Gabriele Villarini ◽  
Mary Lynn Baeck

Abstract Flooding in the eastern United States reflects a mixture of flood-generating mechanisms, with landfalling tropical cyclones and extratropical systems playing central roles. The authors examine the climatology of heavy rainfall and flood magnitudes for the eastern United States through analyses of long-duration records of flood peaks and maximum daily rainfall series. Spatial heterogeneities in flood peak distributions due to orographic precipitation mechanisms in mountainous terrain, coastal circulations near land–ocean boundaries, and urbanization impacts on regional climate are central elements of flood peak distributions. Lagrangian analyses of rainfall distribution and storm evolution are presented for flood events in the eastern United States and used to motivate new directions for stochastic modeling of rainfall. Tropical cyclones are an important element of the upper tail of flood peak distributions throughout the eastern United States, but their relative importance varies widely, and abruptly, in space over the region. Nonstationarities and long-term persistence of flood peak and rainfall distributions are examined from the perspective of the impacts of human-induced climate change on flood-generating mechanisms. Analyses of flood frequency for the eastern United States, which are based on observations from a dense network of U.S. Geological Survey (USGS) stream gauging stations, provide insights into emerging problems in flood science.


2020 ◽  
Vol 44 (5) ◽  
pp. 727-745
Author(s):  
Tao Liu ◽  
Lin Ji ◽  
Victor R Baker ◽  
Tessa M Harden ◽  
Michael L Cline

Given its singular importance for water resources in the southwestern USA, the Upper Colorado River Basin (UCRB) is remarkable for the paucity of its conventional hydrological record of extreme flooding. Short-term record-based flood frequency analyses lead to very great aleatory uncertainties about infrequent extreme flood events and their climate-driven causal associations. This study uses paleoflood hydrology to examine a small portion of the underutilized, but very extensive natural record of Holocene extreme floods in the UCRB. We perform a meta-analysis of 82 extreme paleofloods from 18 slack water deposit sites in the UCRB to show linkages between Holocene climate patterns and extreme floods. The analysis demonstrates several clusters of extreme flood activity: 8040–7960, 4400–4300, 3600–3460, 2900–2740, 2390–1980, 1810–720, and 600–0 years BP. The extreme paleofloods were found to occur during both dry and wet periods in the paleoclimate record. When compared with independent paleoclimatic records across the Rocky Mountains and the southwestern USA, the observed temporal clustering pattern of UCRB extreme paleofloods shows associations with periods of abruptly intensified North Pacific-derived storms connected with enhanced variability of El Niño. This approach demonstrates the value of creating paleohydrological databases and comparing them with hydro-climatic proxies in order to identify natural patterns and to discover possible linkages to fundamental processes such as changes in climate.


2013 ◽  
Vol 26 (10) ◽  
pp. 3067-3086 ◽  
Author(s):  
Jonghun Kam ◽  
Justin Sheffield ◽  
Xing Yuan ◽  
Eric F. Wood

Abstract To assess the influence of Atlantic tropical cyclones (TCs) on the eastern U.S. drought regime, the Variable Infiltration Capacity (VIC) land surface hydrologic model was run over the eastern United States forced by the North American Land Data Assimilation System phase 2 (NLDAS-2) analysis with and without TC-related precipitation for the period 1980–2007. A drought was defined in terms of soil moisture as a prolonged period below a percentile threshold. Different duration droughts were analyzed—short term (longer than 30 days) and long term (longer than 90 days)—as well as different drought severities corresponding to the 10th, 15th, and 20th percentiles of soil moisture depth. With TCs, droughts are shorter in duration and of a lesser spatial extent. Tropical cyclones variously impact soil moisture droughts via late drought initiation, weakened drought intensity, and early drought recovery. At regional scales, TCs decreased the average duration of moderately severe short-term and long-term droughts by less than 4 (10% of average drought duration per year) and more than 5 (15%) days yr−1, respectively. Also, they removed at least two short-term and one long-term drought events over 50% of the study region. Despite the damage inflicted directly by TCs, they play a crucial role in the alleviation and removal of drought for some years and seasons, with important implications for water resources and agriculture.


2014 ◽  
Vol 142 (9) ◽  
pp. 3147-3162 ◽  
Author(s):  
Stephanie N. Stevenson ◽  
Russ S. Schumacher

Extreme rainfall events in the central and eastern United States during 2002–11 were identified using NCEP stage-IV precipitation analyses. Precipitation amounts were compared against established 50- and 100-yr recurrence interval thresholds for 1-, 6-, and 24-h durations. The authors identified points where analyzed precipitation exceeded the threshold, and combined points associated with the same weather system into events. At shorter durations, points exceeding the thresholds were most common in the Southeast, whereas points were more uniformly distributed for the 24-h duration. Most 24-h events have more points than the other durations, reflecting the importance of organized precipitation systems on longer temporal scales. Though monthly peaks varied by region, the maximum (minimum) usually occurred during the summer (winter); however, the 24-h point maximum occurred in September owing to tropical cyclones. The maximum (minimum) in hourly extreme rainfall points occurred at 2300 (1100) LST, though there were regional differences in the timing of the diurnal maxima and minima. Over half of 100-yr, 24-h events were a result of mesoscale convective systems (MCS), with synoptic and tropical systems responsible for nearly one-third and one-tenth, respectively. Of the 10 events with the most points exceeding this threshold, 5 were associated with tropical cyclones, 3 were synoptic events, and 2 were MCSs. Among the MCS events, 7 of the top 10 were training line/adjoining stratiform (TL/AS). While the 49 TL/AS events investigated further had similar moisture availability, the more widespread events had stronger low-level winds, stronger warm air advection, and stronger and more expansive frontogenesis in the inflow.


2021 ◽  
Vol 9 ◽  
Author(s):  
Carlee A. Resh ◽  
Matthew P. Galaska ◽  
Kasey C. Benesh ◽  
Jonathan P. A. Gardner ◽  
Kai-Jian Wei ◽  
...  

The introduction and subsequent range expansion of the Northern snakehead (Channa argus: Channidae, Anabantiformes) is one of a growing number of problematic biological invasions in the United States. This harmful aquatic invasive species is a predatory freshwater fish native to northeastern Asia that, following deliberate introduction, has established itself in multiple water basins in the eastern United States, as well as expanding its range into the Midwest. Previous work assessed the population structure and estimated the long-term effective population sizes of the populations present in the United States, but the source of the initial introduction(s) to the U.S. remains unidentified. Building on earlier work, we used whole genome scans (2b-RAD genomic sequencing) to analyze single nucleotide polymorphisms (SNPs) from C. argus to screen the genomes of these invasive fish from United States waters and from three sites in their native range in China. We recovered 2,822 SNP loci from genomic DNA extracted from 164 fish sampled from the eastern United States and Arkansas (Mississippi River basin), plus 30 fish sampled from three regions of the Yangtze River basin in China (n = 10 individuals per basin). Our results provide evidence supporting the Yangtze River basin in China, specifically the Bohu and/or Liangzi lakes, is a likely source of the C. argus introductions in multiple regions of the U.S., including the Lower Hudson River basin, Upper Hudson River basin and Philadelphia (Lower Delaware River basin). This information, in conjunction with additional sampling from the native range, will help to determine the source(s) of introduction for the other U.S. populations. Additionally, this work will provide valuable information for management to help prevent and manage future introductions into United States waterways, as well as aid in the development of more targeted strategies to regulate established populations and inhibit further spread.


2013 ◽  
Vol 14 (6) ◽  
pp. 1810-1825 ◽  
Author(s):  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Gabriele Villarini ◽  
Daniel B. Wright ◽  
Witold Krajewski

Abstract The authors examine the hydroclimatology, hydrometeorology, and hydrology of extreme floods through analyses that center on the June 2008 flooding in Iowa. The most striking feature of the June 2008 flooding was the flood peak of the Cedar River at Cedar Rapids (3964 m3 s−1), which was almost twice the previous maximum from a record of 110 years. The spatial extent of extreme flooding was exceptional, with more U.S. Geological Survey stream gauging stations reporting record flood peaks than in any other year. The 2008 flooding was produced by a sequence of organized thunderstorm systems over a period of two weeks. The authors examine clustering and seasonality of flooding in the Iowa study region and link these properties to features of the June 2008 flood event. They examine the environment of heavy rainfall in Iowa during June 2008 through analyses of composite rainfall fields (15-min time interval and 1-km spatial resolution) developed with the Hydro-NEXRAD system and simulations using the Weather Research and Forecasting Model (WRF). Water balance analyses of extreme flood response, based on rainfall and discharge observations from basins with extreme flooding, suggest that antecedent soil moisture plays a diminishing role in flood response as the return interval increases. Rainfall structure and evolution play a critical and poorly understood role in determining the scaling of flood response. As in other extreme flood studies, analyses of the Iowa flood data suggest that measurement errors can be significant for record discharge estimates.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 536
Author(s):  
Jordan Dornbierer ◽  
Steve Wika ◽  
Charles Robison ◽  
Gregory Rouze ◽  
Terry Sohl

Land system change has been identified as one of four major Earth system processes where change has passed a destabilizing threshold. A historical record of landscape change is required to understand the impacts change has had on human and natural systems, while scenarios of future landscape change are required to facilitate planning and mitigation efforts. A methodology for modeling long-term historical and future landscape change was applied in the Delaware River Basin of the United States. A parcel-based modeling framework was used to reconstruct historical landscapes back to 1680, parameterized with a variety of spatial and nonspatial historical datasets. Similarly, scenarios of future landscape change were modeled for multiple scenarios out to 2100. Results demonstrate the ability to represent historical land cover proportions and general patterns at broad spatial scales and model multiple potential future landscape trajectories. The resulting land cover collection provides consistent data from 1680 through 2100, at a 30-m spatial resolution, 10-year intervals, and high thematic resolution. The data are consistent with the spatial and thematic characteristics of widely used national-scale land cover datasets, facilitating use within existing land management and research workflows. The methodology demonstrated in the Delaware River Basin is extensible and scalable, with potential applications at national scales for the United States.


Sign in / Sign up

Export Citation Format

Share Document