scholarly journals Potential Utility of the Real-Time TMPA-RT Precipitation Estimates in Streamflow Prediction

2011 ◽  
Vol 12 (3) ◽  
pp. 444-455 ◽  
Author(s):  
Fengge Su ◽  
Huilin Gao ◽  
George J. Huffman ◽  
Dennis P. Lettenmaier

Abstract The potential utility of the real-time Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis real-time product 3B42RT (TMPA-RT) data for streamflow prediction, both through direct comparisons of TMPA-RT estimates with a gridded gauge product and through evaluation of streamflow simulations over four tributaries of La Plata basin (LPB) in South America using the two precipitation products, is investigated. Assessments indicate that the relative accuracy and the hydrologic performance of TMPA-RT-based streamflow simulations generally improved after February 2005. The improvements in TMPA-RT since 2005 are closely related to upgrades in the TMPA-RT algorithm in early February 2005, which include use of additional microwave sensors [Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and Advanced Microwave Sounding Unit-B (AMSU-B)] and implementation of different calibration schemes. This study suggests considerable potential for hydrologic prediction using purely satellite-derived precipitation estimates (no adjustments by in situ gauges) in parts of the globe where in situ observations are sparse.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amardeep Bharti ◽  
Keun Hwa Chae ◽  
Navdeep Goyal

AbstractPlasmonic nanostructures are of immense interest of research due to its widespread applications in microelectronics, photonics, and biotechnology, because of its size and shape-dependent localized surface plasmon resonance response. The great efforts have been constructed by physicists, chemists, and material scientists to deliver optimized reaction protocol to tailor the size and shape of nanostructures. Real-time characterization emerges out as a versatile tool in perspective to the optimization of synthesis parameters. Moreover, in the past decades, radiation-induced reduction of metallic-salt to nanoparticles dominates over the conventional direct chemical reduction process which overcomes the production of secondary products and yields ultra-high quality and pure nanostructures. Here we show, the real-time/in-situ synthesis and detection of plasmonic (Au andAg) nanoparticles using single synchrotron monochromatic 6.7 keV X-rays based Nano-Tomography beamline. The real-time X-ray nano-tomography of plasmonic nanostructures has been first-time successfully achieved at such a low-energy that would be leading to the possibility of these experiments at laboratory-based sources. In-situ optical imaging confirms the radiolysis of water molecule resulting in the production of $$e_{aq}^-,\,OH^\bullet ,$$ e aq - , O H ∙ , and $$O_2^-$$ O 2 - under X-ray irradiation. The obtained particle-size and size-distribution by X-ray tomography are in good agreement to TEM results. The effect of different chemical environment media on the particle-size has also been studied. This work provides the protocol to precisely control the size of nanostructures and to synthesize the ultrahigh-purity grade monodisperse nanoparticles that would definitely enhance the phase-contrast in cancer bio-imaging and plasmonic photovoltaic application.


2006 ◽  
Vol 527-529 ◽  
pp. 1031-1034 ◽  
Author(s):  
K. Kakubari ◽  
R. Kuboki ◽  
Yasuto Hijikata ◽  
Hiroyuki Yaguchi ◽  
Sadafumi Yoshida

Real time observation of SiC oxidation was performed using an in-situ ellipsometer over the temperature range from 900°C to 1150°C. The relations between oxide thickness and oxidation time were obtained precisely by virtue of the real time measurements. We analyzed the relations between oxide thickness and oxidation time by applying the Deal and Grove model to obtain the linear and parabolic rate constants. Taking advantage of in-situ measurements, we successfully obtained the oxidation rate constants with high accuracy.


2014 ◽  
Vol 27 (11) ◽  
pp. 3957-3965 ◽  
Author(s):  
Ali Behrangi ◽  
Graeme Stephens ◽  
Robert F. Adler ◽  
George J. Huffman ◽  
Bjorn Lambrigtsen ◽  
...  

Abstract This study contributes to the estimation of the global mean and zonal distribution of oceanic precipitation rate using complementary information from advanced precipitation measuring sensors and provides an independent reference to assess current precipitation products. Precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and CloudSat cloud profiling radar (CPR) were merged, as the two complementary sensors yield an unprecedented range of sensitivity to quantify rainfall from drizzle through the most intense rates. At higher latitudes, where TRMM PR does not exist, precipitation estimates from Aqua’s Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) complemented CloudSat CPR to capture intense precipitation rates. The high sensitivity of CPR allows estimation of snow rate, an important type of precipitation at high latitudes, not directly observed in current merged precipitation products. Using the merged precipitation estimate from the CloudSat, TRMM, and Aqua platforms (this estimate is abbreviated to MCTA), the authors’ estimate for 3-yr (2007–09) near-global (80°S–80°N) oceanic mean precipitation rate is ~2.94 mm day−1. This new estimate of mean global ocean precipitation is about 9% higher than that of the corresponding Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) value (2.68 mm day−1) and about 4% higher than that of the Global Precipitation Climatology Project (GPCP; 2.82 mm day−1). Furthermore, MCTA suggests distinct differences in the zonal distribution of precipitation rate from that depicted in GPCP and CMAP, especially in the Southern Hemisphere.


2004 ◽  
Vol 70 (7) ◽  
pp. 4165-4169 ◽  
Author(s):  
Miguel Gueimonde ◽  
Satu Tölkkö ◽  
Teemu Korpimäki ◽  
Seppo Salminen

ABSTRACT The application of a real-time quantitative PCR method (5′ nuclease assay), based on the use of a probe labeled at its 5′ end with a stable, fluorescent lanthanide chelate, for the quantification of human fecal bifidobacteria was evaluated. The specificities of the primers and the primer-probe combination were evaluated by conventional PCR and real-time PCR, respectively. The results obtained by real-time PCR were compared with those obtained by fluorescent in situ hybridization, the current gold standard for intestinal microbiota quantification. In general, a good correlation between the two methods was observed. In order to determine the detection limit and the accuracy of the real-time PCR procedure, germfree rat feces were spiked with known amounts of bifidobacteria and analyzed by both methods. The detection limit of the method used in this study was found to be about 5 × 104 cells per g of feces. Both methods, real-time PCR and fluorescent in situ hybridization, led to an accurate quantification of the spiked samples with high levels of bifidobacteria, but real-time PCR was more accurate for samples with low levels. We conclude that the real-time PCR procedure described here is a specific, accurate, rapid, and easy method for the quantification of bifidobacteria in feces.


2014 ◽  
Vol 53 (12) ◽  
pp. 2823-2842 ◽  
Author(s):  
Ali Behrangi ◽  
Konstantinos Andreadis ◽  
Joshua B. Fisher ◽  
F. Joseph Turk ◽  
Stephanie Granger ◽  
...  

AbstractRecognizing the importance and challenges inherent to the remote sensing of precipitation in mountainous areas, this study investigates the performance of the commonly used satellite-based high-resolution precipitation products (HRPPs) over several basins in the mountainous western United States. Five HRPPs [Tropical Rainfall Measuring Mission 3B42 and 3B42-RT algorithms, the Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN), and the PERSIANN Cloud Classification System (PERSIANN-CCS)] are analyzed in the present work using ground gauge, gauge-adjusted radar, and CloudSat precipitation products. Using ground observation of precipitation and streamflow, the skill of HRPPs and the resulting streamflow simulations from the Variable Infiltration Capacity hydrological model are cross-compared. HRPPs often capture major precipitation events but seldom capture the observed magnitude of precipitation over the studied region and period (2003–09). Bias adjustment is found to be effective in enhancing the HRPPs and resulting streamflow simulations. However, if not bias adjusted using gauges, errors are typically large as in the lower-level precipitation inputs to HRPPs. The results using collocated Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and CloudSat precipitation data show that missing data, often over frozen land, and limitations in retrieving precipitation from systems that lack frozen hydrometeors contribute to the observed microwave-based precipitation errors transferred to HRPPs. Over frozen land, precipitation retrievals from infrared sensors and microwave sounders show some skill in capturing the observed precipitation climatology maps. However, infrared techniques often show poor detection skill, and microwave sounding in dry atmosphere remains challenging. By recognizing the sources of precipitation error and in light of the operation of the Global Precipitation Measurement mission, further opportunity for enhancing the current status of precipitation retrievals and the hydrology of cold and mountainous regions becomes available.


Sign in / Sign up

Export Citation Format

Share Document