scholarly journals Assessment of Bias Assumptions for Climate Models

2014 ◽  
Vol 27 (17) ◽  
pp. 6799-6818 ◽  
Author(s):  
Christian Kerkhoff ◽  
Hans R. Künsch ◽  
Christoph Schär

Abstract Climate scenarios make implicit or explicit assumptions about the extrapolation of climate model biases from current to future time periods. Such assumptions are inevitable because of the lack of future observations. This manuscript reviews different bias assumptions found in the literature and provides measures to assess their validity. The authors explicitly separate climate change from multidecadal variability to systematically analyze climate model biases in seasonal and regional surface temperature averages, using global and regional climate models (GCMs and RCMs) from the Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project over Europe. For centennial time scales, it is found that a linear bias extrapolation for GCMs is best supported by the analysis: that is, it is generally not correct to assume that model biases are independent of the climate state. Results also show that RCMs behave markedly differently when forced with different drivers. RCM and GCM biases are not additive, and there is a significant interaction component in the bias of the RCM–GCM model chain that depends on both the RCM and GCM considered. This result questions previous studies that deduce biases (and ultimately projections) in RCM–GCM combinations from reanalysis-driven simulations. The authors suggest that the aforementioned interaction component derives from the refined RCM representation of dynamical and physical processes in the lower troposphere, which may nonlinearly depend upon the larger-scale circulation stemming from the driving GCM. The authors’ analyses also show that RCMs provide added value and that the combined RCM–GCM approach yields, in general, smaller biases in seasonal surface temperature and interannual variability, particularly in summer and even for spatial scales that are, in principle, well resolved by the GCMs.

Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 262 ◽  
Author(s):  
Coraline Wyard ◽  
Sébastien Doutreloup ◽  
Alexandre Belleflamme ◽  
Martin Wild ◽  
Xavier Fettweis

The use of regional climate models (RCMs) can partly reduce the biases in global radiative flux (Eg↓) that are found in reanalysis products and global models, as they allow for a finer spatial resolution and a finer parametrisation of surface and atmospheric processes. In this study, we assess the ability of the MAR («Modèle Atmosphérique Régional») RCM to reproduce observed changes in Eg↓, and we investigate the added value of MAR with respect to reanalyses. Simulations were performed at a horizontal resolution of 5 km for the period 1959–2010 by forcing MAR with different reanalysis products: ERA40/ERA-interim, NCEP/NCAR-v1, ERA-20C, and 20CRV2C. Measurements of Eg↓ from the Global Energy Balance Archive (GEBA) and from the Royal Meteorological Institute of Belgium (RMIB), as well as cloud cover observations from Belgocontrol and RMIB, were used for the evaluation of the MAR model and the forcing reanalyses. Results show that MAR enables largely reducing the mean biases that are present in the reanalyses. The trend analysis shows that only MAR forced by ERA40/ERA-interim shows historical trends, which is probably because the ERA40/ERA-interim has a better horizontal resolution and assimilates more observations than the other reanalyses that are used in this study. The results suggest that the solar brightening observed since the 1980s in Belgium has mainly been due to decreasing cloud cover.


2011 ◽  
Vol 92 (9) ◽  
pp. 1181-1192 ◽  
Author(s):  
Frauke Feser ◽  
Burkhardt Rockel ◽  
Hans von Storch ◽  
Jörg Winterfeldt ◽  
Matthias Zahn

An important challenge in current climate modeling is to realistically describe small-scale weather statistics, such as topographic precipitation and coastal wind patterns, or regional phenomena like polar lows. Global climate models simulate atmospheric processes with increasingly higher resolutions, but still regional climate models have a lot of advantages. They consume less computation time because of their limited simulation area and thereby allow for higher resolution both in time and space as well as for longer integration times. Regional climate models can be used for dynamical down-scaling purposes because their output data can be processed to produce higher resolved atmospheric fields, allowing the representation of small-scale processes and a more detailed description of physiographic details (such as mountain ranges, coastal zones, and details of soil properties). However, does higher resolution add value when compared to global model results? Most studies implicitly assume that dynamical downscaling leads to output fields that are superior to the driving global data, but little work has been carried out to substantiate these expectations. Here a series of articles is reviewed that evaluate the benefit of dynamical downscaling by explicitly comparing results of global and regional climate model data to the observations. These studies show that the regional climate model generally performs better for the medium spatial scales, but not always for the larger spatial scales. Regional models can add value, but only for certain variables and locations—particularly those influenced by regional specifics, such as coasts, or mesoscale dynamics, such as polar lows. Therefore, the decision of whether a regional climate model simulation is required depends crucially on the scientific question being addressed.


Author(s):  
Filippo Giorgi ◽  
Erika Coppola ◽  
Daniela Jacob ◽  
Claas Teichmann ◽  
Sabina Abba Omar ◽  
...  

AbstractWe describe the first effort within the Coordinated Regional Climate Downscaling Experiment - Coordinated Output for Regional Evaluation, or CORDEX-CORE EXP-I. It consists of a set of 21st century projections with two regional climate models (RCMs) downscaling three global climate model (GCM) simulations from the CMIP5 program, for two greenhouse gas concentration pathways (RCP8.5 and RCP2.6), over 9 CORDEX domains at ~25 km grid spacing. Illustrative examples from the initial analysis of this ensemble are presented, covering a wide range of topics, such as added value of RCM nesting, extreme indices, tropical and extratropical storms, monsoons, ENSO, severe storm environments, emergence of change signals, energy production. They show that the CORDEX-CORE EXP-I ensemble can provide downscaled information of unprecedented comprehensiveness to increase understanding of processes relevant for regional climate change and impacts, and to assess the added value of RCMs. The CORDEX-CORE EXP-I dataset, which will be incrementally augmented with new simulations, is intended to be a public resource available to the scientific and end-user communities for application to process studies, impacts on different socioeconomic sectors and climate service activities. The future of the CORDEX-CORE initiative is also discussed.


2006 ◽  
Vol 134 (8) ◽  
pp. 2180-2190 ◽  
Author(s):  
Frauke Feser

Abstract Regional climate models (RCMs) are a widely used tool to describe regional-scale climate variability and change. However, the added value provided by such models is not well explored so far, and claims have been made that RCMs have little utility. Here, it is demonstrated that RCMs are indeed returning significant added value. Employing appropriate spatial filters, the scale-dependent skill of a state-of-the-art RCM (with and without nudging of large scales) is examined by comparing its skill with that of the global reanalyses driving the RCM. This skill is measured by pattern correlation coefficients of the global reanalyses or the RCM simulation and, as a reference, of an operational regional weather analysis. For the spatially smooth variable air pressure the RCM improves this aspect of the simulation for the medium scales if the RCM is driven with large-scale constraints, but not for the large scales. For the regionally more structured quantity near-surface temperature the added value is more obvious. The simulation of medium-scale 2-m temperature anomaly fields amounts to an increase of the mean pattern correlation coefficient up to 30%.


2020 ◽  
Author(s):  
Martina Schubert-Frisius ◽  
Susanne Pfeifer ◽  
Armelle Reca Remedio ◽  
Claas Teichmann ◽  
Lars Buntemeyer ◽  
...  

<p>Within the framework of WCRP CORDEX, the CORE (CORDEX Coordinated Output for Regional Evaluations) experiment provides a homogeneous ensemble of regional climate projections for 9 domains covering all land areas of the globe with the exception of the Arctic and Antarctic regions (http://www.cordex.org/experiment-guidelines/cordex-core/). CORDEX-CORE provides data from two regional climate models (REMO2015 and RegCM), driven by 3 GCMs and under 2 RCP scenario conditions at a resolution of about 25 km. In addition, within the same framework, simulations of the current climate, driven by ERA-Interim, were carried out for all areas with REMO2015 at a grid resolution of approx. 25 km.</p><p>Within the German Project ViWA (Virtual Water Values, https://viwa.geographie-muenchen.de), simulations with the regional climate model REMO2015, driven by ERA-INTERIM analyses were carried out for the same regions globally, but on a significantly higher spatial resolution of approx. 12.5 km. These simulations cover the time period from 2015 to 2018. Comparing these highly resolved simulations to the coarsely resolved CORDEX-CORE simulations, can give indications, in which regions and for which processes the CORDEX-CORE resolution of 25 km is sufficient and where a higher resolution brings a clear added value.</p><p>We will show first results of this comparison, focusing on selected regions and processes which potentially benefit from higher spatial resolution of the simulations.</p>


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2021 ◽  
Author(s):  
Jeremy Carter ◽  
Amber Leeson ◽  
Andrew Orr ◽  
Christoph Kittel ◽  
Melchior van Wessem

<p>Understanding the surface climatology of the Antarctic ice sheet is essential if we are to adequately predict its response to future climate change. This includes both primary impacts such as increased ice melting and secondary impacts such as ice shelf collapse events. Given its size, and inhospitable environment, weather stations on Antarctica are sparse. Thus, we rely on regional climate models to 1) develop our understanding of how the climate of Antarctica varies in both time and space and 2) provide data to use as context for remote sensing studies and forcing for dynamical process models. Given that there are a number of different regional climate models available that explicitly simulate Antarctic climate, understanding inter- and intra model variability is important.</p><p>Here, inter- and intra-model variability in Antarctic-wide regional climate model output is assessed for: snowfall; rainfall; snowmelt and near-surface air temperature within a cloud-based virtual lab framework. State-of-the-art regional climate model runs from the Antarctic-CORDEX project using the RACMO, MAR and MetUM models are used, together with the ERA5 and ERA-Interim reanalyses products. Multiple simulations using the same model and domain boundary but run at either different spatial resolutions or with different driving data are used. Traditional analysis techniques are exploited and the question of potential added value from more modern and involved methods such as the use of Gaussian Processes is investigated. The advantages of using a virtual lab in a cloud based environment for increasing transparency and reproducibility, are demonstrated, with a view to ultimately make the code and methods used widely available for other research groups.</p>


2017 ◽  
Vol 13 (8) ◽  
pp. 1037-1048 ◽  
Author(s):  
Henrik Carlson ◽  
Rodrigo Caballero

Abstract. Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


Sign in / Sign up

Export Citation Format

Share Document