scholarly journals Singular Vectors for Tropical Cyclone–Like Vortices in a Nondivergent Barotropic Framework

2011 ◽  
Vol 68 (10) ◽  
pp. 2273-2291 ◽  
Author(s):  
Munehiko Yamaguchi ◽  
David S. Nolan ◽  
Mohamed Iskandarani ◽  
Sharanya J. Majumdar ◽  
Melinda S. Peng ◽  
...  

Abstract In this study, singular vectors (SVs) are calculated for tropical cyclone (TC)–like vortices on an f plane and β plane using a barotropic model, and the structure and time evolution of the SVs are investigated. In the f-plane study, SVs are calculated for TC-like vortices that do and do not satisfy a necessary condition of barotropic instability of normal modes, in which the vorticity gradient changes sign. It is found that, in the case where the initial vortices do not meet the condition, 1) the SVs are tilted against the shear of the background angular velocity as found earlier by Nolan and Farrell, indicating the growth of SVs through the Orr mechanism; 2) the leading singular value increases with the maximum tangential wind speed Vmax and decreases with the radius of the maximum wind (RMW); and 3) the locations of SVs move outward with increasing RMW, Vmax, and the optimization time. In the case where the initial vortex allows for barotropic instability, the SV is initially tilted against the background shear and exhibits transient growth for a limited period. At a certain time during the initial growth, the SV “locks in” to a normal mode structure and remains in that structure so that it may grow exponentially with time. In contrast to the SVs on an f plane, the azimuthal distribution of the SVs on a β plane becomes more asymmetric, and the extent of the asymmetry increases as the strength of the beta gyres increases. On the β plane, all first and second SVs calculated in this study have an azimuthal wavenumber-1 structure at the optimization time, regardless of whether the vorticity gradient of initial TC-like vortices changes sign and the TC-like vortices include the beta gyres at initial time. It is found that when the first and second SVs are used as ensemble initial perturbations, the linear combination of the initial first and second SVs can shift the vortex toward any direction at the optimization time. This is true even when SVs with a low horizontal resolution are used as initial perturbations, as in the European Centre for Medium-Range Weather Forecasts (ECMWF) and Japan Meteorological Agency (JMA) ensemble prediction system. Such wavenumber-1 perturbations could be useful for generating sufficient spread among the tropical cyclone tracks in ensemble forecasts.

2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2011 ◽  
Vol 26 (5) ◽  
pp. 664-676 ◽  
Author(s):  
Thierry Dupont ◽  
Matthieu Plu ◽  
Philippe Caroff ◽  
Ghislain Faure

Abstract Several tropical cyclone forecasting centers issue uncertainty information with regard to their official track forecasts, generally using the climatological distribution of position error. However, such methods are not able to convey information that depends on the situation. The purpose of the present study is to assess the skill of the Ensemble Prediction System (EPS) from the European Centre for Medium-Range Weather Forecasts (ECMWF) at measuring the uncertainty of up to 3-day track forecasts issued by the Regional Specialized Meteorological Centre (RSMC) La Réunion in the southwestern Indian Ocean. The dispersion of cyclone positions in the EPS is extracted and translated at the RSMC forecast position. The verification relies on existing methods for probabilistic forecasts that are presently adapted to a cyclone-position metric. First, the probability distribution of forecast positions is compared to the climatological distribution using Brier scores. The probabilistic forecasts have better scores than the climatology, particularly after applying a simple calibration scheme. Second, uncertainty circles are built by fixing the probability at 75%. Their skill at detecting small and large error values is assessed. The circles have some skill for large errors up to the 3-day forecast (and maybe after); but the detection of small radii is skillful only up to 2-day forecasts. The applied methodology may be used to assess and to compare the skill of different probabilistic forecasting systems of cyclone position.


2021 ◽  
Vol 893 (1) ◽  
pp. 012047
Author(s):  
R Rahmat ◽  
A M Setiawan ◽  
Supari

Abstract Indonesian climate is strongly affected by El Niño-Southern Oscillation (ENSO) as one of climate-driven factor. ENSO prediction during the upcoming months or year is crucial for the government in order to design the further strategic policy. Besides producing its own ENSO prediction, BMKG also regularly releases the status and ENSO prediction collected from other climate centers, such as Japan Meteorological Agency (JMA) and National Oceanic and Atmospheric Administration (NOAA). However, the skill of these products is not well known yet. The aim of this study is to conduct a simple assessment on the skill of JMA Ensemble Prediction System (EPS) and NOAA Climate Forecast System version 2 (CFSv2) ENSO prediction using World Meteorological Organization (WMO) Standard Verification System for Long Range Forecast (SVS-LRF) method. Both ENSO prediction results also compared each other using Student's t-test. The ENSO predictions data were obtained from the ENSO JMA and ENSO NCEP forecast archive files, while observed Nino 3.4 were calculated from Centennial in situ Observation-Based Estimates (COBE) Sea Surface Temperature Anomaly (SSTA). Both ENSO prediction issued by JMA and NCEP has a good skill on 1 to 3 months lead time, indicated by high correlation coefficient and positive value of Mean Square Skill Score (MSSS). However, the skill of both skills significantly reduced for May-August target month. Further careful interpretation is needed for ENSO prediction issued on this mentioned period.


2020 ◽  
Vol 9 (2) ◽  
pp. 106-116
Author(s):  
Anumeha Dube ◽  
Raghavendra Ashrit ◽  
Sushant Kumar ◽  
Ashu Mamgain

2008 ◽  
Vol 136 (2) ◽  
pp. 443-462 ◽  
Author(s):  
Xiaoli Li ◽  
Martin Charron ◽  
Lubos Spacek ◽  
Guillem Candille

Abstract A regional ensemble prediction system (REPS) with the limited-area version of the Canadian Global Environmental Multiscale (GEM) model at 15-km horizontal resolution is developed and tested. The total energy norm singular vectors (SVs) targeted over northeastern North America are used for initial and boundary perturbations. Two SV perturbation strategies are tested: dry SVs with dry simplified physics and moist SVs with simplified physics, including stratiform condensation and convective precipitation as well as dry processes. Model physics uncertainties are partly accounted for by stochastically perturbing two parameters: the threshold vertical velocity in the trigger function of the Kain–Fritsch deep convection scheme, and the threshold humidity in the Sundqvist explicit scheme. The perturbations are obtained from first-order Markov processes. Short-range ensemble forecasts in summer with 16 members are performed for five different experiments. The experiments employ different perturbation and piloting strategies, and two different surface schemes. Verification focuses on quantitative precipitation forecasts and is done using a range of probabilistic measures. Results indicate that using moist SVs instead of dry SVs has a stronger impact on precipitation than on dynamical fields. Forecast skill for precipitation is greatly influenced by the dominant synoptic weather systems. For stratiform precipitation caused by strong baroclinic systems, the forecast skill is improved in the moist SV experiments relative to the dry SV experiments. For convective precipitation rates in the range 15–50 mm (24 h)−1 produced by weak synoptic baroclinic systems, all experiments exhibit noticeably poorer forecast skills. Skill improvements due to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) surface scheme and stochastic perturbations are also observed.


2010 ◽  
Vol 138 (9) ◽  
pp. 3634-3655 ◽  
Author(s):  
Munehiko Yamaguchi ◽  
Sharanya J. Majumdar

Abstract Ensemble initial perturbations around Typhoon Sinlaku (2008) produced by ECMWF, NCEP, and the Japan Meteorological Agency (JMA) ensembles are compared using The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, and the dynamical mechanisms of perturbation growth associated with the tropical cyclone (TC) motion are investigated for the ECMWF and NCEP ensembles. In the comparison, it is found that the vertical and horizontal distributions of initial perturbations as well as the amplitude are quite different among the three NWP centers before, during, and after the recurvature of Sinlaku. In addition, it turns out that those variations cause a difference in the TC motion not only at the initial time but also during the subsequent forecast period. The ECMWF ensemble exhibits relatively large perturbation growth, which results from 1) the baroclinic energy conversion in a vortex, 2) the baroclinic energy conversion associated with the midlatitude waves, and 3) the barotropic energy conversion in a vortex. Those features are less distinctive in the NCEP ensemble. A statistical verification shows that the ensemble spread of TC track predictions in NCEP (ECMWF) is larger than ECMWF (NCEP) for 1- (3-) day forecasts on average. It can be inferred that while the ECMWF ensemble starts from a relatively small amplitude of initial perturbations, the growth of the perturbations helps to amplify the ensemble spread of tracks. On the other hand, a relatively large amplitude of initial perturbations seems to play a role in producing the ensemble spread of tracks in the NCEP ensemble.


2009 ◽  
Vol 137 (9) ◽  
pp. 2830-2850 ◽  
Author(s):  
Daniel Veren ◽  
Jenni L. Evans ◽  
Sarah Jones ◽  
Francesca Chiaromonte

Abstract Predicting extratropical transition (ET) of a tropical cyclone poses a significant challenge to numerical forecast models because the storm evolution depends on both the timing of the phasing between the tropical cyclone and midlatitude weather systems and the structures of each system. Ensemble prediction systems offer the potential for assessing confidence in numerical guidance during ET cases. Thus, forecasts of storm structure changes during ET from the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system (EPS) are explored using two novel validation approaches. The evolution of the (initially tropical) storm structure is characterized in the framework of the cyclone phase space (CPS) and the validation metrics are based on separation between the EPS forecasts and verifying analyses in the CPS. The first validation approach utilizes two metrics and most closely resembles traditional forecast validation techniques. The second approach involves clustering the ensemble member initializations and operational analyses during the life cycles of each tropical cyclone to provide a reference structure evolution against which to evaluate the EPS forecasts. Application of these metrics is demonstrated for two case studies of ET in the western North Pacific: Typhoons Tokage (2004) and Maemi (2003). Both validation approaches identify a decline in EPS structure forecast accuracy for all valid times coinciding with ET onset and beyond, as well as during a weakening tropical stage prior to ET for Tokage. While track forecast errors contribute to structure errors in the EPS forecasts, they are not an overwhelming factor. The two validation approaches highlight the inability of ensemble member forecasts to appropriately weaken the warm core prior to and during ET, and the effects this has on forecasts of ET timing. The analyses adopted in this study provide a basis for future assessments of ensemble forecast skill of cyclone structure during ET.


2019 ◽  
Vol 147 (11) ◽  
pp. 4261-4285
Author(s):  
Saima Aijaz ◽  
Jeffrey D. Kepert ◽  
Hua Ye ◽  
Zhendong Huang ◽  
Alister Hawksford

Abstract Global ensemble prediction systems have considerable ability to predict tropical cyclone (TC) formation and subsequent evolution. However, because of their relatively coarse resolution, their predictions of intensity and structure are biased. The biases arise mainly from underestimated intensities and enlarged radii, in particular the radius of maximum winds. This paper describes a method to reduce this limitation by bias correcting TCs in the ECMWF Ensemble Prediction System (ECMWF-EPS) for a region northwest of Australia. A bias-corrected TC system will provide more accurate forecasts of TC-generated wind and waves to the oil and gas industry, which operates a large number of offshore facilities in the region. It will also enable improvements in response decisions for weather sensitive operations that affect downtime and safety risks. The bias-correction technique uses a multivariate linear regression method to bias correct storm intensity and structure. Special strategies are used to maintain ensemble spread after bias correction and to predict the radius of maximum winds using a climatological relationship based on wind intensity and storm latitude. The system was trained on the Australian best track TC data and the ECMWF-EPS TC data from two cyclone seasons. The system inserts corrected vortices into the original surface wind and pressure fields, which are then used to estimate wind exceedance probabilities, and to drive a wave model. The bias-corrected system has shown an overall skill improvement over the uncorrected ECMWF-EPS for all TC intensity and structure parameters with the most significant gains for the maximum wind speed prediction. The system has been operational at the Australian Bureau of Meteorology since November 2016.


2005 ◽  
Vol 133 (10) ◽  
pp. 3038-3046 ◽  
Author(s):  
Martin Leutbecher

Abstract The impact on the ECMWF Ensemble Prediction System of using singular vectors computed from 12-h forecasts instead of analyses has been studied. Results are based on 34 cases in November–December 1999 and 28 cases in September 2003. The similarity between singular vectors started from a 12-h forecast and singular vectors started from an analysis is very high for the extratropical singular vectors in each of the 62 cases and for both hemispheres. Consistently, ensemble scores and spread measures show close to neutral impact on geopotential height in the extratropics. The sensitivity of the singular vectors to the choice of trajectory is larger in the Tropics than in the extratropics. However, the spread in tropical cyclone tracks is not significantly decreased if singular vectors computed from 12-h forecasts are used. The computation of singular vectors from forecasts could be used to disseminate the ensemble forecasts earlier or to allocate more resources to the nonlinear forecasts. Furthermore, it greatly facilitates the implementation of computationally more demanding configurations for the singular-vector-based initial perturbations.


Sign in / Sign up

Export Citation Format

Share Document