scholarly journals Understanding the CMIP3 Multimodel Ensemble

2011 ◽  
Vol 24 (16) ◽  
pp. 4529-4538 ◽  
Author(s):  
J. D. Annan ◽  
J. C. Hargreaves

Abstract The Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel ensemble has been widely utilized for climate research and prediction, but the properties and behavior of the ensemble are not yet fully understood. Here, some investigations are undertaken into various aspects of the ensemble’s behavior, in particular focusing on the performance of the multimodel mean. This study presents an explanation of this phenomenon in the context of the statistically indistinguishable paradigm and also provides a quantitative analysis of the main factors that control how likely the mean is to outperform the models in the ensemble, both individually and collectively. The analyses lend further support to the usage of the paradigm of a statistically indistinguishable ensemble and indicate that the current ensemble size is too small to adequately sample the space from which the models are drawn.

2012 ◽  
Vol 25 (21) ◽  
pp. 7764-7771 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Yoo-Geun Ham ◽  
June-Yi Lee

This study assesses the changes in the tropical Pacific Ocean sea surface temperature (SST) trend and ENSO amplitude by comparing a historical run of the World Climate Research Programme Coupled Model Intercomparison Project (CMIP) phase-5 multimodel ensemble dataset (CMIP5) and the CMIP phase-3 dataset (CMIP3). The results indicate that the magnitude of the SST trend in the tropical Pacific basin has been significantly reduced from CMIP3 to CMIP5, which may be associated with the overestimation of the response to natural forcing and aerosols by including Earth system models in CMIP5. Moreover, the patterns of tropical warming over the second half of the twentieth century have changed from a La Niña–like structure in CMIP3 to an El Niño–like structure in CMIP5. Further analysis indicates that such changes in the background state of the tropical Pacific and an increase in the sensitivity of the atmospheric response to the SST changes in the eastern tropical Pacific have influenced the ENSO properties. In particular, the ratio of the SST anomaly variance in the eastern and western tropical Pacific increased from CMIP3 to CMIP5, indicating that a center of action associated with the ENSO amplitude has shifted to the east.


2011 ◽  
Vol 24 (16) ◽  
pp. 4402-4418 ◽  
Author(s):  
Aaron Donohoe ◽  
David S. Battisti

Abstract The planetary albedo is partitioned into a component due to atmospheric reflection and a component due to surface reflection by using shortwave fluxes at the surface and top of the atmosphere in conjunction with a simple radiation model. The vast majority of the observed global average planetary albedo (88%) is due to atmospheric reflection. Surface reflection makes a relatively small contribution to planetary albedo because the atmosphere attenuates the surface contribution to planetary albedo by a factor of approximately 3. The global average planetary albedo in the ensemble average of phase 3 of the Coupled Model Intercomparison Project (CMIP3) preindustrial simulations is also primarily (87%) due to atmospheric albedo. The intermodel spread in planetary albedo is relatively large and is found to be predominantly a consequence of intermodel differences in atmospheric albedo, with surface processes playing a much smaller role despite significant intermodel differences in surface albedo. The CMIP3 models show a decrease in planetary albedo under a doubling of carbon dioxide—also primarily due to changes in atmospheric reflection (which explains more than 90% of the intermodel spread). All models show a decrease in planetary albedo due to the lowered surface albedo associated with a contraction of the cryosphere in a warmer world, but this effect is small compared to the spread in planetary albedo due to model differences in the change in clouds.


2012 ◽  
Vol 25 (20) ◽  
pp. 6942-6957 ◽  
Author(s):  
Jong-Seong Kug ◽  
Yoo-Geun Ham

Abstract Observational studies hypothesized that Indian Ocean (IO) feedback plays a role in leading to a fast transition of El Niño. When El Niño accompanies IO warming, IO warming induces the equatorial easterlies over the western Pacific (WP), leading to a rapid termination of El Niño via an oceanic adjust process. In this study, this IO feedback is reinvestigated using the Coupled Model Intercomparison Project phase 3 (CMIP3) coupled GCM simulations. It is found that most of the climate models mimic this IO feedback reasonably, supporting the observational hypothesis. However, most climate models tend to underestimate the strength of the IO feedback, which means the phase transition of ENSO due to the IO feedback is less effective than the observed one. Furthermore, there is great intermodel diversity in simulating the strength of the IO feedback. It is shown that the strength of the IO feedback is related to the precipitation responses to El Niño and IO SST forcings over the warm-pool regions. Moreover, the authors suggest that the distribution of climatological precipitation is one important component in controlling the strength of the IO feedback.


2021 ◽  
Author(s):  
Fredrik Boberg ◽  
Ruth Mottram ◽  
Nicolaj Hansen ◽  
Shuting Yang ◽  
Peter L. Langen

Abstract. The future rates of ice sheet melt in Greenland and Antarctica are an important factor when making estimates of the likely rate of sea level rise. Global climate models that took part in the fifth Coupled Model Intercomparison Project (CMIP5) have generally been unable to replicate observed rates of ice sheet melt. With the advent of the sixth Coupled Model Intercomparison Project (CMIP6), with a general increase in the equilibrium climate sensitivity, we here compare two versions of the global climate model EC-Earth using the regional climate model HIRHAM5 downscaling EC-Earth for Greenland and Antarctica. One version (v2) of EC-Earth is taken from CMIP5 for the high-emissions Representative Concentration Pathways (RCP8.5) scenario and the other (v3) from CMIP6 for the comparable high-emissions Shared Socioeconomic Pathways (SSP5-8.5) scenario). For Greenland, we downscale the two versions of EC-Earth for the historical period 1991–2010 and for the scenario period 2081–2100. For Antarctica, the periods are 1971–2000 and 2071–2100, respectively. For the Greenland Ice Sheet, we find that the mean change in temperature is 5.9 °C when downscaling EC-Earth v2 and 6.8 °C when downscaling EC-Earth v3. Corresponding values for Antarctica are 4.1 °C for v2 and 4.8 °C for v3. The mean change in surface mass balance at the end of the century under these high emissions scenarios is found to be −210 Gt yr−1 (v2) and −1150 Gt yr−1 (v3) for Greenland and 420 Gt yr−1 (v2) and 80 Gt yr−1 (v3) for Antarctica. These distinct differences in temperature change and particularly surface mass balance change are a result of the higher equilibrium climate sensitivity in EC-Earth v3 (4.3 K) compared with 3.3 K in EC-Earth v2 and the differences in greenhouse gas concentrations between the RCP8.5 and the SSP5-8.5 scenarios.


2020 ◽  
Vol 13 (11) ◽  
pp. 5567-5581
Author(s):  
Sheri Mickelson ◽  
Alice Bertini ◽  
Gary Strand ◽  
Kevin Paul ◽  
Eric Nienhouse ◽  
...  

Abstract. The complexity of each Coupled Model Intercomparison Project grows with every new generation. The Phase 5 effort saw a dramatic increase in the number of experiments that were performed and the number of variables that were requested compared to its previous generation, Phase 3. The large increase in data volume stressed the resources of several centers including at the National Center for Atmospheric Research. During Phase 5, we missed several deadlines and we struggled to get the data out to the community for analysis. In preparation for the current generation, Phase 6, we examined the weaknesses in our workflow and addressed the performance issues with new software tools. Through this investment, we were able to publish approximately 565 TB of compressed data to the community, with another 30 TB yet to be published. When compared to the volumes we produced in the previous generation, 165 TB of uncompressed data, we were able to provide 6 times the amount of data and we accomplish this within one-third of the time. This provided us with an approximate 18 times faster speedup. While this paper discusses the improvements we have made to our own workflow for the Coupled Model Intercomparison Project Phase 6 (CMIP6), we hope to encourage other centers to evaluate and invest in their own workflows in order to be successful in these types of modeling campaigns.


2020 ◽  
Vol 37 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Pengfei Lin ◽  
Zhipeng Yu ◽  
Hailong Liu ◽  
Yongqiang Yu ◽  
Yiwen Li ◽  
...  

Abstract The datasets of two Ocean Model Intercomparison Project (OMIP) simulation experiments from the LASG/IAP Climate Ocean Model, version 3 (LICOM3), forced by two different sets of atmospheric surface data, are described in this paper. The experiment forced by CORE-II (Co-ordinated Ocean–Ice Reference Experiments, Phase II) data (1948–2009) is called OMIP1, and that forced by JRA55-do (surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis) data (1958–2018) is called OMIP2. First, the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described. Second, the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation. We find that the mean states, interannual variabilities, and long-term linear trends can be reproduced well by the two experiments. The differences between the two datasets are also discussed. Finally, the usage of these data is described. These datasets are helpful toward understanding the origin system bias of the fully coupled model.


2013 ◽  
Vol 26 (5) ◽  
pp. 1473-1484 ◽  
Author(s):  
John Turner ◽  
Thomas J. Bracegirdle ◽  
Tony Phillips ◽  
Gareth J. Marshall ◽  
J. Scott Hosking

Abstract This paper examines the annual cycle and trends in Antarctic sea ice extent (SIE) for 18 models used in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that were run with historical forcing for the 1850s to 2005. Many of the models have an annual SIE cycle that differs markedly from that observed over the last 30 years. The majority of models have too small of an SIE at the minimum in February, while several of the models have less than two-thirds of the observed SIE at the September maximum. In contrast to the satellite data, which exhibit a slight increase in SIE, the mean SIE of the models over 1979–2005 shows a decrease in each month, with the greatest multimodel mean percentage monthly decline of 13.6% decade−1 in February and the greatest absolute loss of ice of −0.40 × 106 km2 decade−1 in September. The models have very large differences in SIE over 1860–2005. Most of the control runs have statistically significant trends in SIE over their full time span, and all of the models have a negative trend in SIE since the mid-nineteenth century. The negative SIE trends in most of the model runs over 1979–2005 are a continuation of an earlier decline, suggesting that the processes responsible for the observed increase over the last 30 years are not being simulated correctly.


2021 ◽  
Author(s):  
Yao Fu ◽  
Peter Brandt ◽  
Franz Philip Tuchen ◽  
Joke F. Lübbecke ◽  
Chunzai Wang

<p>The Atlantic Subtropical Cells (STCs) consist primarily of poleward Ekman divergence in the surface layer, subduction in the subtropics, and equatorward convergence in the thermocline that largely compensates the surface Ekman divergence through equatorial upwelling. As a result, the STCs play an important role in connecting the tropical and subtropical Atlantic Ocean, in terms of heat, freshwater, oxygen, and nutrients transports. However, their representation in state-of-the-art coupled models has not been systematically evaluated so far. In this study, we investigate the performance of the Coupled Model Intercomparison Project phase 6 (CMIP6) models in simulating the Atlantic STCs. Comparing model results with observations, we first present the simulated mean state with respect to ensembles of the key components participating in the STC loop, i.e., the meridional Ekman and geostrophic flow at 10°N and 10°S, and the Equatorial Undercurrent (EUC) at 23°W. We then examine the inter-model spread and the relationships between these key components. We find that there is a general weak bias in the Southern Hemispheric ensemble Ekman transports and mixed-layer geostrophic transports in comparison to the observations. The inter-model spread of mean EUC strengths are primarily associated with the intensity of the mean wind stress in the tropical South Atlantic among the models. Since the poleward Ekman transports induced by the trade winds are regarded as the driver of the STC loop, our results point out the necessity to improve skills of coupled models to simulate the Southern Hemisphere atmospheric forcing in driving the Atlantic STCs.</p>


Sign in / Sign up

Export Citation Format

Share Document