scholarly journals The Relationship between Land–Ocean Surface Temperature Contrast and Radiative Forcing

2011 ◽  
Vol 24 (13) ◽  
pp. 3239-3256 ◽  
Author(s):  
F. Hugo Lambert ◽  
Mark J. Webb ◽  
Manoj M. Joshi

Abstract Previous work has demonstrated that observed and modeled climates show a near-time-invariant ratio of mean land to mean ocean surface temperature change under transient and equilibrium global warming. This study confirms this in a range of atmospheric models coupled to perturbed sea surface temperatures (SSTs), slab (thermodynamics only) oceans, and a fully coupled ocean. Away from equilibrium, it is found that the atmospheric processes that maintain the ratio cause a land-to-ocean heat transport anomaly that can be approximated using a two-box energy balance model. When climate is forced by increasing atmospheric CO2 concentration, the heat transport anomaly moves heat from land to ocean, constraining the land to warm in step with the ocean surface, despite the small heat capacity of the land. The heat transport anomaly is strongly related to the top-of-atmosphere radiative flux imbalance, and hence it tends to a small value as equilibrium is approached. In contrast, when climate is forced by prescribing changes in SSTs, the heat transport anomaly replaces “missing” radiative forcing over land by moving heat from ocean to land, warming the land surface. The heat transport anomaly remains substantial in steady state. These results are consistent with earlier studies that found that both land and ocean surface temperature changes may be approximated as local responses to global mean radiative forcing. The modeled heat transport anomaly has large impacts on surface heat fluxes but small impacts on precipitation, circulation, and cloud radiative forcing compared with the impacts of surface temperature change. No substantial nonlinearities are found in these atmospheric variables when the effects of forcing and surface temperature change are added.

2021 ◽  
Author(s):  
Matthew Henry ◽  
Geoffrey Vallis

The early Eocene was characterised by much higher temperatures and a smaller equator-to-pole surface temperature gradient than today. Comprehensive climate models have been reasonably successful in simulating many features of that climate in the annual average. However, good simulations of the seasonal variations, and in particular the much reduced Arctic land temperature seasonality and associated much warmer winters, have proven more difficult. Further, aside from an increased level of greenhouse gases, it remains unclear what the key processes are that give rise to an Eocene climate, and whether there is a unique combination of factors that leads to agreement with available proxies. Here we use a very flexible General Circulation Model to examine the sensitivity of the modelled climate to differences in CO2 concentration, land surface properties, ocean heat transport, and cloud extent and thickness. Even in the absence of ice or changes in cloudiness, increasing the CO2 concentration leads to a polar-amplified surface temperature change because of increased water vapour and the lack of convection at high latitudes. Additional low clouds over Arctic land generally decreases summer temperatures and, except at very high CO2 levels, increases winter temperatures, thus helping achieve an Eocene climate. An increase in the land surface heat capacity, plausible given large changes in vegetation and landscape, also decreases the Arctic land seasonality. In general, various different combinations of factors -- high CO2 levels, changes in low-level clouds, and an increase in land surface heat capacity -- can lead to a simulation consistent with current proxy data.


2021 ◽  
Author(s):  
Andrew Gettelman ◽  
Chieh-Chieh Chen ◽  
Charles G. Bardeen

Abstract. The COVID19 pandemic caused significant economic disruption in 2020 and severely impacted air traffic. We use a state of the art Earth System Model and ensembles of tightly constrained simulations to evaluate the effect of the reductions in aviation traffic on contrail radiative forcing and climate in 2020. In the absence of any COVID19 pandemic caused reductions, the model simulates a contrail Effective Radiative Forcing (ERF) 62 ± 59 m Wm−2 (2 standard deviations). The contrail ERF has complex spatial and seasonal patterns that combine the offsetting effect of shortwave (solar) cooling and longwave (infrared) heating from contrails and contrail cirrus. Cooling is larger in June–August due to the preponderance of aviation in the N. Hemisphere, while warming occurs throughout the year. The spatial and seasonal forcing variations also map onto surface temperature variations. The net land surface temperature change due to contrails in a normal year is estimated at 0.13 ± 0.04 K (2 standard deviations) with some regions warming as much as 0.7 K. The effect of COVID19 reductions in flight traffic decreased contrails. The unique timing of such reductions, which were maximum in N. Hemisphere spring and summer when the largest contrail cooling occurs, means that cooling due to fewer contrails in boreal spring and fall was offset by warming due to fewer contrails in boreal summer to give no significant annual averaged ERF from contrail changes in 2020. Despite no net significant global ERF, because of the spatial and seasonal timing of contrail ERF, some land regions that would have cooled slightly (minimum −0.2 K) but significantly from contrail changes in 2020. The implications for future climate impacts of contrails are discussed.


2013 ◽  
Vol 4 (2) ◽  
pp. 785-852 ◽  
Author(s):  
R. B. Skeie ◽  
T. Berntsen ◽  
M. Aldrin ◽  
M. Holden ◽  
G. Myhre

Abstract. The equilibrium climate sensitivity (ECS) is constrained based on observed near-surface temperature change, changes in ocean heat content (OHC) and detailed radiative forcing (RF) time series from pre-industrial times to 2010 for all main anthropogenic and natural forcing mechanism. The RF time series are linked to the observations of OHC and temperature change through an energy balance model and a stochastic model, using a Bayesian approach to estimate the ECS and other unknown parameters from the data. For the net anthropogenic RF the posterior mean in 2010 is 2.1 W m−2 with a 90% credible interval (C.I.) of 1.3 to 2.8 W m−2, excluding present day total aerosol effects (direct + indirect) stronger than −1.7 W m−2. The posterior mean of the ECS is 1.8 °C with 90% C.I. ranging from 0.9 to 3.2 °C which is tighter than most previously published estimates. We find that using 3 OHC data sets simultaneously substantially narrows the range in ECS, while using only one set and similar time periods can produce comparable results as previously published estimates including the heavy tail in the probability function. The use of additional 10 yr of data for global mean temperature change and ocean heat content data narrow the probability density function of the ECS. In addition when data only until year 2000 is used the estimated mean of ECS is 20% higher. Explicitly accounting for internal variability widens the 90% C.I. for the ECS by 60%, while the mean ECS only becomes slightly higher.


2015 ◽  
Vol 28 (4) ◽  
pp. 1630-1648 ◽  
Author(s):  
Timothy Andrews ◽  
Jonathan M. Gregory ◽  
Mark J. Webb

Abstract Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of the Coupled Model Intercomparison Project (CMIP5) atmosphere–ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined, the climate feedback parameter becomes significantly (95% confidence) less negative (i.e., the effective climate sensitivity increases) as time passes. Cloud feedback parameters show the largest changes. In the AOGCM mean, approximately 60% of the change in feedback parameter comes from the tropics (30°N–30°S). An important region involved is the tropical Pacific, where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea surface temperatures and sea ice prescribed from its AOGCM counterpart, each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. It is also demonstrated that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but nonzero change in net radiation at the top of the atmosphere (~−0.5 W m−2 in HadCM3).


Sign in / Sign up

Export Citation Format

Share Document