On the Possible Link between Tropical Convection and the Northern Hemisphere Arctic Surface Air Temperature Change between 1958 and 2001

2011 ◽  
Vol 24 (16) ◽  
pp. 4350-4367 ◽  
Author(s):  
Sukyoung Lee ◽  
Tingting Gong ◽  
Nathaniel Johnson ◽  
Steven B. Feldstein ◽  
David Pollard

Abstract This study presents mechanisms for the polar amplification of surface air temperature that occurred in the Northern Hemisphere (NH) between the periods of 1958–77 (P1) and 1982–2001 (P2). Using European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) reanalysis data, it is found that over the ice-covered Arctic Ocean, the winter surface warming arises from dynamic warming (stationary eddy heat flux and adiabatic warming). Over the ice-free Arctic Ocean between the Greenland and the Barents Seas, downward infrared radiative (IR) flux is found to dominate the warming. To investigate whether the difference in the flow between P1 and P2 is due to changes in the frequency of occurrence of a small number of teleconnection patterns, a coupled self-organizing map (SOM) analysis of the 250-hPa streamfunction and tropical convective precipitation is performed. The latter field was specified to lead the former by 5 days. The results of the analysis showed that the P2 − P1 trend arises from a decrease in the frequency of negative phase PNA-like and circumglobal streamfunction patterns and a corresponding increase in the frequency of positive PNA-like and circumglobal streamfunction patterns. The occurrence of the two strong 1982–83 and 1997–98 El Niño events also contributes toward this trend. The corresponding trend in the convective precipitation is from below average to above average values in the tropical Indo-western Pacific region. Each of the above patterns was found to have an e-folding time scale from 6 to 8 days, which implies that the P2 − P1 trend can be understood as arising from the change in the frequency of occurrence of teleconnection patterns that fluctuate on intraseasonal time scales. The link between intraseasonal and interannual variability was further examined by linearly regressing various quantities against trend patterns with interannual variability subtracted. It was found that enhanced convective precipitation is followed 3–6 days later by the occurrence of the P2 − P1 circulation trend pattern, and then 1–2 days later by the corresponding trend pattern in the downward IR flux. This finding suggests that an increased frequency of the above sequence of events, which occurs on intraseasonal time scales, can account for the NH winter polar amplification of the surface air temperature via increased dynamic warming and downward IR flux.

Author(s):  
N. M. DATSENKO ◽  
◽  
D. M. SONECHKIN ◽  
B. YANG ◽  
J.-J. LIU ◽  
...  

The spectral composition of temporal variations in the Northern Hemisphere mean surface air temperature is estimated and compared in 2000-year paleoclimatic reconstructions. Continuous wavelet transforms of these reconstructions are used for the stable estimation of energy spectra. It is found that low-frequency parts of the spectra (the periods of temperature variations of more than 100 years) based on such high-resolution paleoclimatic indicators as tree rings, corals, etc., are similar to the spectrum of white noise, that is never observed in nature. This seems unrealistic. The famous reconstruction called “Hockey Stick” is among such unrealistic reconstructions. Reconstructions based not only on high-resolution but also on low-resolution indicators seem to be more realistic, since the low-frequency parts of their spectra have the pattern of red noise. They include the “Boomerang” reconstruction showing that some warm periods close to the present-day one were observed in the past.


2019 ◽  
Vol 53 (3-4) ◽  
pp. 1805-1821 ◽  
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Linye Song ◽  
Wen Chen

2014 ◽  
Vol 27 (14) ◽  
pp. 5396-5410 ◽  
Author(s):  
Nicholas R. Cavanaugh ◽  
Samuel S. P. Shen

Abstract The first four statistical moments and their trends are calculated for the average daily surface air temperature (SAT) from 1950 to 2010 using the Global Historical Climatology Network–Daily station data for each season relative to the 1961–90 climatology over the Northern Hemisphere. Temporal variation of daily SAT probability distributions are represented as generalized linear regression coefficients on the mean, standard deviation, skewness, and kurtosis calculated for each 10-yr moving time window from 1950–59 to 2001–10. The climatology and trends of these statistical moments suggest that daily SAT probability distributions are non-Gaussian and are changing in time. The climatology of the first four statistical moments has distinct spatial patterns with large coherent structure for mean and standard deviation and relatively smaller and more regionalized patterns for skewness and kurtosis. The linear temporal trends from 1950 to 2010 of the first four moments also have coherent spatial patterns. The linear temporal trends in the characterizing statistical moments are statistically significant at most locations and have differing spatial patterns for different moments. The regionalized variations specific to higher moments may be related to the climate dynamics that contribute to extremes. The nonzero skewness and kurtosis makes this detailed documentation on the higher statistical moments useful for quantifying climate changes and assessing climate model uncertainties.


Author(s):  
P. D. Jones ◽  
S. C. B. Raper ◽  
R. S. Bradley ◽  
H. F. Diaz ◽  
P. M. Kellyo ◽  
...  

2011 ◽  
Vol 18 (2) ◽  
pp. 251-260 ◽  
Author(s):  
M. Paluš ◽  
D. Novotná

Abstract. Beginning from the 1950's, Paluš and Novotná (2009) observed statistically significant phase coherence among oscillatory modes with the period of approximately 7–8 years detected in monthly time series of sunspot numbers, geomagnetic activity aa index, North Atlantic Oscillation (NAO) index and near-surface air temperature from several mid-latitude European stations. Focusing on geographical distribution of the phenomenon we study Northern Hemisphere patterns of phase coherence between solar/geomagnetic activity and NCEP/NCAR and ERA40 near-surface air temperature. Both the reanalysis datasets provide consistent patterns of areas with marked phase coupling between solar/geomagnetic activity and climate variability observed in continuous monthly data, independent of the season, however, confined to the temporal scale related to the oscillatory periods about 7–8 years.


2012 ◽  
Vol 6 (4) ◽  
pp. 3317-3348 ◽  
Author(s):  
C. Brutel-Vuilmet ◽  
M. Ménégoz ◽  
G. Krinner

Abstract. The 20th century seasonal Northern Hemisphere land snow cover as simulated by available CMIP5 model output is compared to observations. On average, the models reproduce the observed snow cover extent very well, but the significant trend towards a~reduced spring snow cover extent over the 1979–2005 is underestimated. We show that this is linked to the simulated Northern Hemisphere extratropical land warming trend over the same period, which is underestimated, although the models, on average, correctly capture the observed global warming trend. There is a good linear correlation between hemispheric seasonal spring snow cover extent and boreal large-scale annual mean surface air temperature in the models, supported by available observations. This relationship also persists in the future and is independent of the particular anthropogenic climate forcing scenario. Similarly, the simulated linear correlation between the hemispheric seasonal spring snow cover extent and global mean annual mean surface air temperature is stable in time. However, the sensitivity of the Northern Hemisphere spring snow cover to global mean surface air temperature changes is underestimated at present because of the underestimate of the boreal land temperature change amplification.


Sign in / Sign up

Export Citation Format

Share Document