scholarly journals Verification and Intercomparison of Multimodel Simulated Land Surface Hydrological Datasets over the United States

2011 ◽  
Vol 12 (4) ◽  
pp. 531-555 ◽  
Author(s):  
Yun Fan ◽  
Huug M. van den Dool ◽  
Wanru Wu

Abstract Several land surface datasets, such as the observed Illinois soil moisture dataset; three retrospective offline run datasets from the Noah land surface model (LSM), Variable Infiltration Capacity (VIC) LSM, and Climate Prediction Center leaky bucket soil model; and three reanalysis datasets (North American Regional Reanalysis, NCEP/Department of Energy Global Reanalysis, and 40-yr ECMWF Re-Analysis), are used to study the spatial and temporal variability of soil moisture and its response to the major components of land surface hydrologic cycles: precipitation, evaporation, and runoff. Detailed analysis was performed on the evolution of the soil moisture vertical profile. Over Illinois, model simulations are compared to observations, but for the United States as a whole some impressions can be gained by comparing the multiple soil moisture–precipitation–evaporation–runoff datasets to one another. The magnitudes and partitioning of major land surface water balance components on seasonal–interannual time scales have been explored. It appears that evaporation has the most prominent annual cycle but its interannual variability is relatively small. For other water balance components, such as precipitation, runoff, and surface water storage change, the amplitudes of their annual cycles and interannual variations are comparable. This study indicates that all models have a certain capability to reproduce observed soil moisture variability on seasonal–interannual time scales, but offline runs are decidedly better than reanalyses (in terms of validation against observations) and more highly correlated to one another (in terms of intercomparison) in general. However, noticeable differences are also observed, such as the degree of simulated drought severity and the locations affected—this is due to the uncertainty in model physics, input forcing, and mode of running (interactive or offline), which continue to be major issues for land surface modeling.

2020 ◽  
Vol 21 (10) ◽  
pp. 2343-2357
Author(s):  
Huancui Hu ◽  
L. Ruby Leung ◽  
Zhe Feng

ABSTRACTWarm-season rainfall associated with mesoscale convective systems (MCSs) in the central United States is characterized by higher intensity and nocturnal timing compared to rainfall from non-MCS systems, suggesting their potentially different footprints on the land surface. To differentiate the impacts of MCS and non-MCS rainfall on the surface water balance, a water tracer tool embedded in the Noah land surface model with multiparameterization options (WT-Noah-MP) is used to numerically “tag” water from MCS and non-MCS rainfall separately during April–August (1997–2018) and track their transit in the terrestrial system. From the water-tagging results, over 50% of warm-season rainfall leaves the surface–subsurface system through evapotranspiration by the end of August, but non-MCS rainfall contributes a larger fraction. However, MCS rainfall plays a more important role in generating surface runoff. These differences are mostly attributed to the rainfall intensity differences. The higher-intensity MCS rainfall tends to produce more surface runoff through infiltration excess flow and drives a deeper penetration of the rainwater into the soil. Over 70% of the top 10th percentile runoff is contributed by MCS rainfall, demonstrating its important contribution to local flooding. In contrast, lower-intensity non-MCS rainfall resides mostly in the top layer and contributes more to evapotranspiration through soil evaporation. Diurnal timing of rainfall has negligible effects on the flux partitioning for both MCS and non-MCS rainfall. Differences in soil moisture profiles for MCS and non-MCS rainfall and the resultant evapotranspiration suggest differences in their roles in soil moisture–precipitation feedbacks and ecohydrology.


2018 ◽  
Author(s):  
Sara Sadri ◽  
Eric F. Wood ◽  
Ming Pan

Abstract. Since April 2015, NASA's Soil Moisture Active Passive (SMAP) mission has monitored near-surface soil moisture, mapping the globe between the latitude bands of 85.044° N/S in 2–3 days depending on location. SMAP Level 3 passive radiometer product (SPL3SMP) measures the amount of water in the top 5 cm of soil except for regions of heavy vegetation (vegetation water content >4.5 kg/m2) and frozen or snow covered locations. SPL3SMP retrievals are spatially and temporally discontinuous, so the 33 months offers a short SMAP record length and poses a statistical challenge for meaningful assessment of its indices. The SMAP SPL4SMAU data product provides global surface and root zone soil moisture at 9-km resolution based on assimilating the SPL3SMP product into the NASA Catchment land surface model. Of particular interest to SMAP-based agricultural applications is a monitoring product that assesses the SMAP near-surface soil moisture in terms of probability percentiles for dry and wet conditions. We describe here SMAP-based indices over the continental United States (CONUS) based on both near-surface and root zone soil moisture percentiles. The percentiles are based on fitting a Beta distribution to the retrieved moisture values. To assess the data adequacy, a statistical comparison is made between fitting the distribution to VIC soil moisture values for the days when SPL3SMP are available, versus fitting to a 1979–2017 VIC data record. For the cold season (November–April), 57 % of grids were deemed to be consistent between the periods, and 68 % in the warm season (May–October), based on a Kolmogorov–Smirnov statistical test. It is assumed that if grids passed the consistency test using VIC data, then the grid had sufficient SMAP data. Our near-surface and root zone drought index on maps are shown to be similar to those produced by the U.S. Drought Monitor (from D0-D4) and GRACE. In a similar manner, we extend the index to include pluvial conditions using indices W0-W4. This study is a step forward towards building a national and international soil moisture monitoring system, without which, quantitative measures of drought and pluvial conditions will remain difficult to judge.


2006 ◽  
Vol 7 (3) ◽  
pp. 534-547 ◽  
Author(s):  
Ming Pan ◽  
Eric F. Wood

Abstract A procedure is developed to incorporate equality constraints in Kalman filters, including the ensemble Kalman filter (EnKF), and is referred to as the constrained ensemble Kalman filter (CEnKF). The constraint is carried out as a two-step filtering approach, with the first step being the standard (ensemble) Kalman filter. The second step is the constraint step carried out by another Kalman filter that optimally redistributes any imbalance from the first step. The CEnKF is implemented over a 75 000 km2 domain in the southern Great Plains region of the United States, using the terrestrial water balance as the constraint. The observations, consisting of gridded fields of the upper two soil moisture layers from the Oklahoma Mesonet system, Atmospheric Radiation Measurement Program Cloud and Radiation Testbed (ARM-CART) energy balance Bowen ratio (EBBR) latent heat estimates, and U.S. Geological Survey (USGS) streamflow from unregulated basins, are assimilated into the Variable Infiltration Capacity (VIC) land surface model. The water balance was applied at the domain scale, and estimates of the water balance components for the domain are updated from the data assimilation step so as to assure closure.


2016 ◽  
Vol 17 (4) ◽  
pp. 1049-1067 ◽  
Author(s):  
Paul A. Dirmeyer ◽  
Jiexia Wu ◽  
Holly E. Norton ◽  
Wouter A. Dorigo ◽  
Steven M. Quiring ◽  
...  

Abstract Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those it is found that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely because of differences in instrumentation, calibration, and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat-dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory), and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but they poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration, or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.


2021 ◽  
Author(s):  
Tobias Stacke ◽  
Stefan Hagemann

Abstract. Global hydrological models (GHMs) are a useful tool in the assessment of the land surface water balance. They are used to further the understanding of interactions between water balance components as well as their past evolution and potential future development under various scenarios. While GHMs are a part of the Hydrologist's toolbox since several decades, the models are continuously developed. In our study, we present the HydroPy model, a revised version of an established GHM, the Max-Planck Institute for Meteorology's Hydrology Model (MPI-HM). Being rewritten in Python, the new model requires much less effort in maintenance and due to its flexible infrastructure, new processes can be easily implemented. Besides providing a thorough documentation of the processes currently implemented in HydroPy, we demonstrate the skill of the model in simulating the land surface water balance. We find that evapotranspiration is reproduced realistically for the majority of the land surface but is underestimated in the tropics. The simulated river discharge correlates well with observations. Biases are evident for the annual accumulated discharge, however they can – at least to some part – be attributed to discrepancies between the meteorological model forcing data and the observations. Finally, we show that HydroPy performs very similar to MPI-HM and, thus, conclude the successful transition from MPI-HM to HydroPy.


2020 ◽  
Vol 21 (7) ◽  
pp. 1469-1484
Author(s):  
Yafang Zhong ◽  
Jason A. Otkin ◽  
Martha C. Anderson ◽  
Christopher Hain

AbstractDespite the key importance of soil moisture–evapotranspiration (ET) coupling in the climate system, limited availability of soil moisture and ET observations poses a major impediment for investigation of this coupling regarding spatiotemporal characteristics and potential modifications under climate change. To better understand and quantify soil moisture–ET coupling and relevant processes, this study takes advantage of in situ soil moisture observations from the U.S. Climate Reference Network (USCRN) for the time period of 2010–17 and a satellite-derived version of the evapotranspiration stress index (ESI), which represents anomalies in a normalized ratio of actual to reference ET. The analyses reveal strong seasonality and regional characteristics of the ESI–land surface interactions across the United States, with the strongest control of soil moisture on the ESI found in the southern Great Plains during spring, and in the north-central United States, the northern Great Plains, and the Pacific Northwest during summer. In drier climate regions such as the northern Great Plains and north-central United States, soil moisture control on the ESI is confined to surface soil layers, with subsurface soil moisture passively responding to changes in the ESI. The soil moisture–ESI interaction is more uniform between surface and subsurface soils in wetter regions with higher vegetation cover. These results provide a benchmark for simulation of soil moisture–ET coupling and are useful for projection of associated climate processes in the future.


2020 ◽  
Vol 21 (11) ◽  
pp. 2537-2549
Author(s):  
Trent W. Ford ◽  
Steven M. Quiring ◽  
Chen Zhao ◽  
Zachary T. Leasor ◽  
Christian Landry

AbstractSoil moisture is an important variable for numerous scientific disciplines, and therefore provision of accurate and timely soil moisture information is critical. Recent initiatives, such as the National Soil Moisture Network effort, have increased the spatial coverage and quality of soil moisture monitoring infrastructure across the contiguous United States. As a result, the foundation has been laid for a high-resolution, real-time gridded soil moisture product that leverages data from in situ networks, satellite platforms, and land surface models. An important precursor to this development is a comprehensive, national-scale assessment of in situ soil moisture data fidelity. Additionally, evaluation of the United States’s current in situ soil moisture monitoring infrastructure can provide a means toward more informed satellite and model calibration and validation. This study employs a triple collocation approach to evaluate the fidelity of in situ soil moisture observations from over 1200 stations across the contiguous United States. The primary goal of the study is to determine the monitoring stations that are best suited for 1) inclusion in national-scale soil moisture datasets, 2) deriving in situ–informed gridded soil moisture products, and 3) validating and benchmarking satellite and model soil moisture data. We find that 90% of the 1233 stations evaluated exhibit high spatial consistency with satellite remote sensing and land surface model soil moisture datasets. In situ error did not significantly vary by climate, soil type, or sensor technology, but instead was a function of station-specific properties such as land cover and station siting.


Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Aymeric Bocher ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
...  

LDAS-Monde, an offline land data assimilation system with global capacity, is applied over the CONtiguous US (CONUS) domain to enhance monitoring accuracy for water and energy states and fluxes. LDAS-Monde ingests satellite-derived Surface Soil Moisture (SSM) and Leaf Area Index (LAI) estimates to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) Land Surface Model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (CTRIP) continental hydrological system (ISBA-CTRIP). LDAS-Monde is forced by the ERA-5 atmospheric reanalysis from the European Center For Medium Range Weather Forecast (ECMWF) from 2010 to 2016 leading to a 7-yr, quarter degree spatial resolution offline reanalysis of Land Surface Variables (LSVs) over CONUS. The impact of assimilating LAI and SSM into LDAS-Monde is assessed over North America, by comparison to satellite-driven model estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project, and upscaled ground-based observations of gross primary productivity from the FLUXCOM project. Also, taking advantage of the relatively dense data networks over CONUS, we also evaluate the impact of the assimilation against in-situ measurements of soil moisture from the USCRN network (US Climate Reference Network) are used in the evaluation, together with river discharges from the United States Geophysical Survey (USGS) and the Global Runoff Data Centre (GRDC). Those data sets highlight the added value of assimilating satellite derived observations compared to an open-loop simulation (i.e. no assimilation). It is shown that LDAS-Monde has the ability not only to monitor land surface variables but also to forecast them, by providing improved initial conditions which impacts persist through time. LDAS-Monde reanalysis has a potential to be used to monitor extreme events like agricultural drought, also. Finally, limitations related to LDAS-Monde and current satellite-derived observations are exposed as well as several insights on how to use alternative datasets to analyze soil moisture and vegetation state.


Sign in / Sign up

Export Citation Format

Share Document