scholarly journals The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA)

2020 ◽  
Vol 101 (10) ◽  
pp. E1743-E1760 ◽  
Author(s):  
Gabriele G. Pfister ◽  
Sebastian D. Eastham ◽  
Avelino F. Arellano ◽  
Bernard Aumont ◽  
Kelley C. Barsanti ◽  
...  

ABSTRACTTo explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders.

Author(s):  
Isaac Lyngaas ◽  
Matt Norman ◽  
Youngsung Kim

In this work, we demonstrate the process for porting the cloud resolving model (CRM) used in the Energy Exascale Earth System Model Multi-Scale Modeling Framework (E3SM-MMF) from its original Fortran code base to C++ code using a portability library. This porting process is performed using the Yet Another Kernel Library (YAKL), a simplified C++ portability library that specializes in Fortran porting. In particular, we detail our step-by-step approach for porting the System for Atmospheric Modeling (SAM), the CRM used in E3SM-MMF, using a hybrid Fortran/C++ framework that allows for systematic reproduction and correctness testing of gradually ported YAKL C++ code. Additionally, analysis is done on the performance of the ported code using OLCF’s Summit supercomputer.


2020 ◽  
Author(s):  
João Teixeira ◽  
Fiona O'Connor ◽  
Nadine Unger ◽  
Apostolos Voulgarakis

<p>Fires constitutes a key process in the Earth system (ES), being driven by climate as well as affecting the climate by changing atmospheric composition and its impact on the terrestrial carbon cycle. However, global modelling studies on the effects of fires on atmospheric composition, radiative forcing and climate have been very limited to date. The aim of this work is the development and application of a fully coupled vegetation-fire-chemistry-climate ES model in order to quantify the impacts of fire variability on atmospheric composition-climate interactions in the present day. For this, the INFERNO fire model is coupled to the atmosphere-only configuration of the UK’s Earth System Model (UKESM). This fire-atmosphere interaction through atmospheric chemistry and aerosols allows for fire emissions to feedback on radiation and clouds changing weather which can consequently feedback on the atmospheric drivers of fire. Additionally, INFERNO was updated based on recent developments in the literature to improve the representation of human/economic factors in the anthropogenic ignition and suppression of fire. This work presents an assessment of the effects of interactive fire coupling on atmospheric composition and climate compared to the standard UKESM1 configuration which has prescribed fire emissions. Results show a satisfactory performance when using the fire-atmosphere coupling (the “online” version of the model) when compared to the offline UKESM that uses prescribed fire. The model can reproduce observed present day global fire emissions of carbon monoxide (CO) and aerosols, despite underestimating the global average burnt area. However, at a regional scale there is an overestimation of fire emissions over Africa due to the miss-representation of the underlying vegetation types and an underestimation over Equatorial Asia due to a lack of representation of peat fires.</p>


2021 ◽  
Author(s):  
Ka Ming Fung ◽  
Maria Val Martin ◽  
Amos P. K. Tai

Abstract. Global ammonia (NH3) emission is expected to continue to rise due to intensified fertilization for growing food to satisfy the increasing demand worldwide. Previous studies focused mainly on estimating the land-to-atmosphere NH3 injection but seldom addressed the other side of the bidirectional nitrogen exchange – deposition. Ignoring this significant input source of soil mineral nitrogen may lead to an underestimation of NH3 emissions from natural sources. Here, we used an Earth system model to quantify NH3-induced changes in atmospheric composition and the consequent impacts on the Earth's radiative budget and biosphere, as well as the impacts of deposition on NH3 emissions from the land surface. We implemented a new scheme into the Community Land Model version 5 (CLM5) of the Community Earth System Model version 2 (CESM2) to estimate the volatilization of ammonium salt (NH4+) associated with synthetical fertilizers into gaseous NH3. We further parameterized the amount of emitted NH3 captured in the plant canopy to derive a more accurate quantity of NH3 that escapes to the atmosphere. Our modified CLM5 estimated that 11 Tg-N yr−1 of global NH3 emission is attributable to synthetic fertilizers. Interactively coupling terrestrial NH3 emissions to atmospheric chemistry simulations by the Community Atmospheric Model version 4 with chemistry (CAM4-chem), we found that such emissions favor the formation and deposition of NH4+ aerosol, which in turn disrupts the aerosol radiative effect and enhances soil NH3 volatilization in regions downwind of fertilized croplands. Our fully-coupled simulations showed that global-total NH3 emission is enhanced by nitrogen deposition by 2.4 Tg-N yr−1, when compared to the baseline case with 2000-level fertilization but without deposition- induced enhancements. In synergy with observations and emission inventories, our work provides a useful tool for stakeholders to evaluate the intertwined relations between agricultural trends, fertilize use, NH3 emission, atmospheric aerosols, and climate, so as to derive optimal strategies for securing both food production and environmental sustainability.


2020 ◽  
Author(s):  
Gabriele Pfister ◽  
Andrew Conley ◽  
Mary Barth ◽  
Louisa Emmons ◽  
Forrest Lacey ◽  
...  

<p>Current chemical transport models inadequately account for the two-way coupling of atmospheric chemistry with other Earth System components over the range of urban/local to regional to global scales and from the surface up to the top of the atmosphere.  To meet future challenges, future modeling systems need to have the ability to (1) change spatial scales in a consistent manner, (2) resolve multiple spatial scales in a single simulation, (3) couple model components which represent different Earth system processes, and (4) easily mix-and-match model components. This is the motivation behind MUSICA - the Multi-Scale Infrastructure for Chemistry and Aerosols, which we develop together with the atmospheric chemistry community. MUSICA will allow simulation of large-scale atmospheric phenomena while still resolving chemistry at scales relevant for representing societal and scientific critical phenomena (e.g. urban air quality, or convection in monsoon regions) and also enable connections to other components of the earth system by fully coupling to land and ocean models. MUSICA objectives will be achieved through development of a global modeling system capable of regional refinement and the new Model Independent Chemistry Module (MICM). We will discuss the infrastructure and show preliminary results of atmospheric chemistry simulations being conducted in a global model with regional refinement: the Community Atmosphere Model with chemistry using spectral element grids that refine from one-degree resolution to ~14 km resolution over the conterminous United States. These early results confirm that model resolution does matter for representing regional air quality and that the two-way feedback between the local and global scale can play an important role.</p>


2021 ◽  
Author(s):  
Lu Shen ◽  
Daniel J. Jacob ◽  
Mauricio Santillana ◽  
Kelvin Bates ◽  
Jiawei Zhuang ◽  
...  

Abstract. Atmospheric composition plays a crucial role in determining the evolution of the atmosphere, but the high computational cost has been the major barrier to include atmospheric chemistry into Earth system models. Here we present an adaptive and efficient algorithm that can remove this barrier. Our approach is inspired by unsupervised machine learning clustering techniques and traditional asymptotic analysis ideas. We first partition species into 13 blocks, using a novel machine learning approach that analyzes the species network structures and their production and loss rates. Building on these blocks, we pre-select 20 submechanisms, as defined by unique assemblages of the species blocks, and then pick locally on the fly which submechanism to use based on local chemical conditions. In each submechanism, we isolate slow species and unimportant reactions from the coupled system. Application to a global 3-D model shows that we can cut the computational costs of the chemical integration by 50 % with accuracy losses smaller than 1 % that do not propagate in time. Tests show that this algorithm is highly chemically coherent making it easily portable to new models without compromising its performance. Our algorithm will significantly ease the computational bottleneck and will facilitate the development of next generation of earth system models.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5320
Author(s):  
Zuohua Li ◽  
Zhihan Peng ◽  
Jun Teng

Compared with normal strength concrete (NSC), ultra-high-performance steel fiber-reinforced concrete (UHPFRC) shows superior performance. The concrete damage plasticity (CDP) model in ABAQUS can predict the mechanical properties of UHPFRC components well after calibration. However, the simulation of the whole structure is seriously restricted by the computational capability. In this study, a novel multi-scale modeling strategy for UHPFRC structure was proposed, which used a calibrated CDP model. A novel combined multi-point constraint (CMPC) was established by the simultaneous equations of displacement coordination and energy balance in different degrees of freedom of interface nodes. The advantage is to eliminate the problem of the tangential over-constraint of displacement coordination equation at the interface and to avoid stress iteration of the energy balance equation in the plastic stage. The expressions of CMPC equations of typical multi-scale interface connection were derived. The multi-scale models of UHPFRC components under several load cases were established. The results show that the proposed strategy can well predict the strain distribution and damage distribution of UHPFRC while significantly reducing the number of model elements and improving the computational efficiency. This study provides an accurate and efficient finite element modeling strategy for the design and analysis of UHPFRC structures.


2018 ◽  
Vol 11 (11) ◽  
pp. 4603-4620 ◽  
Author(s):  
Lu Hu ◽  
Christoph A. Keller ◽  
Michael S. Long ◽  
Tomás Sherwen ◽  
Benjamin Auer ◽  
...  

Abstract. We present a full-year online global simulation of tropospheric chemistry (158 coupled species) at cubed-sphere c720 (∼12.5×12.5km2) resolution in the NASA Goddard Earth Observing System Model version 5 Earth system model (GEOS-5 ESM) with GEOS-Chem as a chemical module (G5NR-chem). The GEOS-Chem module within GEOS uses the exact same code as the offline GEOS-Chem chemical transport model (CTM) developed by a large atmospheric chemistry research community. In this way, continual updates to the GEOS-Chem CTM by that community can be seamlessly passed on to the GEOS chemical module, which remains state of the science and referenceable to the latest version of GEOS-Chem. The 1-year G5NR-chem simulation was conducted to serve as the Nature Run for observing system simulation experiments (OSSEs) in support of the future geostationary satellite constellation for tropospheric chemistry. It required 31 wall-time days on 4707 compute cores with only 24 % of the time spent on the GEOS-Chem chemical module. Results from the GEOS-5 Nature Run with GEOS-Chem chemistry were shown to be consistent to the offline GEOS-Chem CTM and were further compared to global and regional observations. The simulation shows no significant global bias for tropospheric ozone relative to the Ozone Monitoring Instrument (OMI) satellite and is highly correlated with observations spatially and seasonally. It successfully captures the ozone vertical distributions measured by ozonesondes over different regions of the world, as well as observations for ozone and its precursors from the August–September 2013 Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign over the southeast US. It systematically overestimates surface ozone concentrations by 10 ppbv at sites in the US and Europe, a problem currently being addressed by the GEOS-Chem CTM community and from which the GEOS ESM will benefit through the seamless update of the online code.


2013 ◽  
Vol 13 (5) ◽  
pp. 12541-12724 ◽  
Author(s):  
A. Baklanov ◽  
K. H. Schluenzen ◽  
P. Suppan ◽  
J. Baldasano ◽  
D. Brunner ◽  
...  

Abstract. The simulation of the coupled evolution of atmospheric dynamics, pollutant transport, chemical reactions and atmospheric composition is one of the most challenging tasks in environmental modelling, climate change studies, and weather forecasting for the next decades as they all involve strongly integrated processes. Weather strongly influences air quality (AQ) and atmospheric transport of hazardous materials, while atmospheric composition can influence both weather and climate by directly modifying the atmospheric radiation budget or indirectly affecting cloud formation. Until recently, however, due to the scientific complexities and lack of computational power, atmospheric chemistry and weather forecasting have developed as separate disciplines, leading to the development of separate modelling systems that are only loosely coupled. The continuous increase in computer power has now reached a stage that enables us to perform online coupling of regional meteorological models with atmospheric chemical transport models. The focus on integrated systems is timely, since recent research has shown that meteorology and chemistry feedbacks are important in the context of many research areas and applications, including numerical weather prediction (NWP), AQ forecasting as well as climate and Earth system modelling. However, the relative importance of online integration and its priorities, requirements and levels of detail necessary for representing different processes and feedbacks can greatly vary for these related communities: (i) NWP, (ii) AQ forecasting and assessments, (iii) climate and earth system modelling. Additional applications are likely to benefit from online modelling, e.g.: simulation of volcanic ash or forest fire plumes, pollen warnings, dust storms, oil/gas fires, geo-engineering tests involving changes in the radiation balance. The COST Action ES1004 – European framework for online integrated air quality and meteorology modelling (EuMetChem) – aims at paving the way towards a new generation of online integrated atmospheric chemical transport and meteorology modelling with two-way interactions between different atmospheric processes including dynamics, chemistry, clouds, radiation, boundary layer and emissions. As its first task, we summarise the current status of European modelling practices and experience with online coupled modelling of meteorology with atmospheric chemistry including feedback mechanisms and attempt reviewing the various issues connected to the different modules of such online coupled models but also providing recommendations for coping with them for the benefit of the modelling community at large.


Sign in / Sign up

Export Citation Format

Share Document