scholarly journals Introducing the new Regional Community Earth System Model, R-CESM

Author(s):  
Dan Fu ◽  
Justin Small ◽  
Jaison Kurian ◽  
Yun Liu ◽  
Brian Kauffman ◽  
...  

AbstractThe development of high-resolution, fully-coupled, regional Earth system model systems is important for improving our understanding of climate variability, future projections, and extreme events at regional scales. Here we introduce and present an overview of the newly-developed Regional Community Earth System Model (R-CESM). Different from other existing regional climate models, R-CESM is based on the Community Earth System Model version 2 (CESM2) framework. We have incorporated the Weather Research and Forecasting (WRF) model and Regional Ocean Modeling System (ROMS) into CESM2 as additional components. As such, R-CESM can be conveniently used as a regional dynamical downscaling tool for the global CESM solutions or/and as a standalone high-resolution regional coupled model. The user interface of R-CESM follows that of CESM, making it readily accessible to the broader community. Among countless potential applications of R-CESM, we showcase here a few preliminary studies that illustrate its novel aspects and value. These include: 1) assessing the skill of R-CESM in a multi-year, high-resolution, regional coupled simulation of the Gulf of Mexico; 2) examining the impact of WRF and CESM ocean-atmosphere coupling physics on tropical cyclone simulations; and 3) a convection-permitting simulation of submesoscale ocean-atmosphere interactions. We also discuss capabilities under development such as i) regional refinement using a high-resolution ROMS nested within global CESM; and ii) “online” coupled data assimilation. Our open-source framework (publicly available at https://github.com/ihesp/rcesm1) can be easily adapted to a broad range of applications that are of interest to the users of CESM, WRF, and ROMS.

2019 ◽  
Vol 54 (1-2) ◽  
pp. 793-806 ◽  
Author(s):  
Jonathan Eliashiv ◽  
Aneesh C. Subramanian ◽  
Arthur J. Miller

AbstractA new prototype coupled ocean–atmosphere Ensemble Kalman Filter reanalysis product, the Community Earth System Model using the Data Assimilation Research Testbed (CESM-DART), is studied by comparing its tropical climate variability to other reanalysis products, available observations, and a free-running version of the model. The results reveal that CESM-DART produces fields that are comparable in overall performance with those of four other uncoupled and coupled reanalyses. The clearest signature of differences in CESM-DART is in the analysis of the Madden–Julian Oscillation (MJO) and other tropical atmospheric waves. MJO energy is enhanced over the free-running CESM as well as compared to the other products, suggesting the importance of the surface flux coupling at the ocean–atmosphere interface in organizing convective activity. In addition, high-frequency Kelvin waves in CESM-DART are reduced in amplitude compared to the free-running CESM run and the other products, again supportive of the oceanic coupling playing a role in this difference. CESM-DART also exhibits a relatively low bias in the mean tropical precipitation field and mean sensible heat flux field. Conclusive evidence of the importance of coupling on data assimilation performance will require additional detailed direct comparisons with identically formulated, uncoupled data assimilation runs.


2021 ◽  
Vol 14 (1) ◽  
pp. 603-628
Author(s):  
Shiming Xu ◽  
Jialiang Ma ◽  
Lu Zhou ◽  
Yan Zhang ◽  
Jiping Liu ◽  
...  

Abstract. High-resolution sea ice modeling is becoming widely available for both operational forecasts and climate studies. In traditional Eulerian grid-based models, small-scale sea ice kinematics represent the most prominent feature of high-resolution simulations, and with rheology models such as viscous–plastic (VP) and Maxwell elasto-brittle (MEB), sea ice models are able to reproduce multi-fractal sea ice deformation and linear kinematic features that are seen in high-resolution observational datasets. In this study, we carry out modeling of sea ice with multiple grid resolutions by using the Community Earth System Model (CESM) and a grid hierarchy (22, 7.3, and 2.4 km grid stepping in the Arctic). By using atmospherically forced experiments, we simulate consistent sea ice climatology across the three resolutions. Furthermore, the model reproduces reasonable sea ice kinematics, including multi-fractal spatial scaling of sea ice deformation that partially depends on atmospheric circulation patterns and forcings. By using high-resolution runs as references, we evaluate the model's effective resolution with respect to the statistics of sea ice kinematics. Specifically, we find the spatial scale at which the probability density function (PDF) of the scaled sea ice deformation rate of low-resolution runs matches that of high-resolution runs. This critical scale is treated as the effective resolution of the coarse-resolution grid, which is estimated to be about 6 to 7 times the grid's native resolution. We show that in our model, the convergence of the elastic–viscous–plastic (EVP) rheology scheme plays an important role in reproducing reasonable kinematics statistics and, more strikingly, simulates systematically thinner sea ice than the standard, non-convergent experiments in landfast ice regions of the Canadian Arctic Archipelago. Given the wide adoption of EVP and subcycling settings in current models, it highlights the importance of EVP convergence, especially for climate studies and projections. The new grids and the model integration in CESM are openly provided for public use.


2020 ◽  
Author(s):  
Shiming Xu ◽  
Jialiang Ma ◽  
Lu Zhou ◽  
Yan Zhang ◽  
Jiping Liu ◽  
...  

Abstract. High-resolution sea ice modeling is becoming widely available for both operational forecasts and climate studies. Sea ice kinematics is the most prominent feature of high-resolution simulations, and with rheology models such as Viscous-Plastic, current models are able to reproduce multi-fractality and linear kinematic features in satellite observations. In this study, we carry out multi-scale sea ice modeling with Community Earth System Model (CESM) by using a grid hierarchy (22 km, 7.3 km, and 2.5 km grid stepping in the Arctic). By using atmospherically forced experiments, we simulate consistent sea ice climatology across the 3 resolutions. Furthermore, the model reproduces reasonable sea ice kinematics, including multi-fractal deformation and scaling properties that are temporally changing and dependent on circulation patterns and forcings (e.g., Arctic Oscillation). With the grid hierarchy, we are able to evaluate the model's effective spatial resolution regarding the statistics of kinematics, which is estimated to be about 6 to 7 times that of the grid's native resolution. Besides, we show that in our model, the convergence of the Elastic-Viscous-Plastic (EVP) rheology scheme plays an important role in reproducing reasonable kinematics statistics, and more strikingly, simulates systematically thinner sea ice than the standard, non-convergent experiments in landfast ice regions of Canadian Arctic Archipelago. Given the wide adoption of EVP and subcycling settings in current models, it highlights the importance of EVP convergence especially for climate studies and projections. The new grids and the model integration in CESM are openly provided for public use.


2016 ◽  
Vol 9 (11) ◽  
pp. 4209-4225 ◽  
Author(s):  
Xiaomeng Huang ◽  
Qiang Tang ◽  
Yuheng Tseng ◽  
Yong Hu ◽  
Allison H. Baker ◽  
...  

Abstract. In the Community Earth System Model (CESM), the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Numerical experiments using the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16 875 cores.


Ocean Science ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1443-1457
Author(s):  
René M. van Westen ◽  
Henk A. Dijkstra

Abstract. In this paper, we consider Maud Rise polynya formation in a long (250-year) high-resolution (ocean 0.1∘, atmosphere 0.5∘ horizontal model resolution) of the Community Earth System Model. We find a dominant multidecadal timescale in the occurrence of these Maud Rise polynyas. Analysis of the results leads us to the interpretation that a preferred timescale can be induced by the variability of the Weddell Gyre, previously identified as the Southern Ocean Mode. The large-scale pattern of heat content variability associated with the Southern Ocean Mode modifies the stratification in the Maud Rise region and leads to a preferred timescale in convection through preconditioning of the subsurface density and consequently to polynya formation.


2020 ◽  
Author(s):  
Shaoqing Zhang ◽  
Haohuan Fu ◽  
Lixin Wu ◽  
Yuxuan Li ◽  
Hong Wang ◽  
...  

Abstract. With the semi-conductor technology gradually approaching its physical and heat limits, recent supercomputers have adopted major architectural changes to continue increasing the performance through more power-efficient heterogeneous many-core systems. Examples include Sunway TaihuLight that has four Management Processing Element (MPE) and 256 Computing Processing Element (CPE) inside one processor and Summit that has two central processing units (CPUs) and 6 graphics processing units (GPUs) inside one node. Meanwhile, current high-resolution Earth system models that desperately require more computing power, generally consist of millions of lines of legacy codes developed for traditional homogeneous multi-core processors and cannot automatically benefit from the advancement of supercomputer hardware. As a result, refactoring and optimizing the legacy models for new architectures become a key challenge along the road of taking advantage of greener and faster supercomputers, providing better support for the global climate research community and contributing to the long-lasting society task of addressing long-term climate change. This article reports the efforts of a large group in the International Laboratory for High-Resolution Earth System Prediction (iHESP) established by the cooperation of Qingdao Pilot National Laboratory for Marine Science and Technology (QNLM), Texas A & M University and the National Center for Atmospheric Research (NCAR), with the goal of enabling highly efficient simulations of the high-resolution (25-km atmosphere and 10-km ocean) Community Earth System Model (CESM-HR) on Sunway TaihuLight. The refactoring and optimizing efforts have improved the simulation speed of CESM-HR from 1 SYPD (simulation years per day) to 3.4 SYPD (with output disabled), and supported several hundred years of pre-industrial control simulations. With further strategies on deeper refactoring and optimizing for a few remaining computing hot spots, we expect an equivalent or even better efficiency than homogeneous CPU platforms. The refactoring and optimizing processes detailed in this paper on the Sunway system should have implications to similar efforts on other heterogeneous many-core systems such as GPU-based high-performance computing (HPC) systems.


Author(s):  
John M. Dennis ◽  
Mariana Vertenstein ◽  
Patrick H. Worley ◽  
Arthur A. Mirin ◽  
Anthony P. Craig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document