scholarly journals Influence of the Subgrid Variability of the Raindrop Size Distribution on Radar Rainfall Estimators

2012 ◽  
Vol 51 (4) ◽  
pp. 780-785 ◽  
Author(s):  
Joël Jaffrain ◽  
Alexis Berne

AbstractThis work aims at quantifying the variability of the parameters of the power laws used for rain-rate estimation from radar data, on the basis of raindrop size distribution measurements over a typical weather radar pixel. Power laws between the rain rate and the reflectivity or the specific differential phase shift are fitted to the measured values, and the variability of the parameters is analyzed. At the point scale, the variability within this radar pixel cannot be solely explained by the sampling uncertainty associated with disdrometer measurements. When parameters derived from point measurements are applied at the radar pixel scale, the resulting error in the rain amount varies between −2% and +15%.

2005 ◽  
Vol 2 ◽  
pp. 51-57 ◽  
Author(s):  
G. Vulpiani ◽  
F. S. Marzano ◽  
V. Chandrasekar ◽  
R. Uijlenhoet

Abstract. A new model-based iterative technique to correct for attenuation and differential attenuation and retrieve rain rate, based on a neural-network scheme and a differential phase constraint, is presented. Numerical simulations are used to investigate the efficiency and accuracy of this approach named NIPPER. The simulator is based on a T-matrix solution technique, while precipitation is characterized with respect to shape, raindrop size distribution and orientation. A sensitivity analysis is performed in order to evaluate the expected errors of this method. The performance of the proposed methodology on radar measurements is evaluated by using one-dimensional Gaussian shaped rain cell models and synthetic radar data derived from disdrometer measurements. Numerical results are discussed in order to evaluate the robustness of the proposed technique.


2019 ◽  
Vol 23 (10) ◽  
pp. 4153-4170 ◽  
Author(s):  
Yu Ma ◽  
Guangheng Ni ◽  
Chandrasekar V. Chandra ◽  
Fuqiang Tian ◽  
Haonan Chen

Abstract. Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation, especially in complex terrain or urban environments which are known for complicated rainfall mechanism and high spatial and temporal variability. In this study, the DSD characteristics of rainy seasons in the Beijing urban area are extensively investigated using 5-year DSD observations from a Parsivel2 disdrometer located at Tsinghua University. The results show that the DSD samples with rain rate < 1 mm h−1 account for more than half of total observations. The mean values of the normalized intercept parameter (log 10Nw) and the mass-weighted mean diameter (Dm) of convective rain are higher than that of stratiform rain, and there is a clear boundary between the two types of rain in terms of the scattergram of log 10Nw versus Dm. The convective rain in Beijing is neither continental nor maritime, owing to the particular location and local topography. As the rainfall intensity increases, the DSD spectra become higher and wider, but they still have peaks around diameter D∼0.5 mm. The midsize drops contribute most towards accumulated rainwater. The Dm and log 10Nw values exhibit a diurnal cycle and an annual cycle. In addition, at the stage characterized by an abrupt rise of urban heat island (UHI) intensity as well as the stage of strong UHI intensity during the day, DSD shows higher Dm values and lower log 10Nw values. The localized radar reflectivity (Z) and rain rate (R) relations (Z=aRb) show substantial differences compared to the commonly used NEXRAD relationships, and the polarimetric radar algorithms R(Kdp), R(Kdp, ZDR), and R(ZH, ZDR) show greater potential for rainfall estimation.


2019 ◽  
Author(s):  
Yu Ma ◽  
Guangheng Ni ◽  
V. Chandrasekar ◽  
Fuqiang Tian ◽  
Haonan Chen

Abstract. Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation, especially in complex terrain or urban environment which is known for its complicated rainfall mechanism and high spatial and temporal variability. In this study, the DSD characteristics of rainy seasons in Beijing urban area are extensively investigated using 5-year DSD observations from a Parsivel2 disdrometer located at Tsinghua University. The results show that the DSD samples with rain rate < 1 mm h−1 account for more than half of total observations. The mean values of log10 Nw and Dm of convective rain are higher than that of stratiform rain, and there is a clear boundary between the two types of rain in terms of the scattergram of log10Nw versus Dm. The convective rain in Beijing is neither continental nor maritime owing to the particular location and local topography. As the rainfall intensity increases, the DSD spectra become higher and wider, but they still have peaks around diameter D ~ 0.5 mm. The midsize drops contribute most towards accumulated rainwater. The Dm and log10Nw values show a diurnal cycle and an annual cycle. In addition, DSD shows higher Dm values and lower log10Nw values during the periods of strong urban heat island (UHI) effect and UHI up stage of a day, and the same in July and August. The localized radar reflectivity (Z) and rain rate (R) relations (Z = aRb) show substantial differences compared to the commonly used NEXRAD relationships. And the polarimetric radar algorithms R(Kdp), R(Kdp, ZDR), and R(ZH, ZDR) show greater potential for rainfall estimation.


2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 319 ◽  
Author(s):  
Patrick Gatlin ◽  
Walter Petersen ◽  
Kevin Knupp ◽  
Lawrence Carey

Vertical variability in the raindrop size distribution (RSD) can disrupt the basic assumption of a constant rain profile that is customarily parameterized in radar-based quantitative precipitation estimation (QPE) techniques. This study investigates the utility of melting layer (ML) characteristics to help prescribe the RSD, in particular the mass-weighted mean diameter (Dm), of stratiform rainfall. We utilize ground-based polarimetric radar to map the ML and compare it with Dm observations from the ground upwards to the bottom of the ML. The results show definitive proof that a thickening, and to a lesser extent a lowering, of the ML causes an increase in raindrop diameter below the ML that extends to the surface. The connection between rainfall at the ground and the overlying microphysics in the column provide a means for improving radar QPE at far distances from a ground-based radar or close to the ground where satellite-based radar rainfall retrievals can be ill-defined.


2017 ◽  
Vol 18 (5) ◽  
pp. 1285-1303 ◽  
Author(s):  
Firat Y. Testik ◽  
Bin Pei

Abstract The wind effects on the shape of drop size distribution (DSD) and the driving microphysical processes for the DSD shape evolution were investigated using the dataset from the Midlatitude Continental Convective Clouds Experiment (MC3E). The quality-controlled DSD spectra from MC3E were grouped for each of the rainfall events by considering the precipitation type (stratiform vs convective) and liquid water content for the analysis. The DSD parameters (e.g., mass-weighted mean diameter) and the fitted DSD slopes for these grouped spectra showed statistically significant trends with varying wind speed. Increasing wind speeds were observed to modify the DSD shapes by increasing the number of small drops and decreasing the number of large drops, indicating that the raindrop breakup process governs the DSD shape evolution. Both spontaneous and collisional raindrop breakup modes were analyzed to elucidate the process responsible for the DSD shape evolution with varying wind speed. The analysis revealed that the collisional breakup process controls the wind-induced DSD shape. The findings of this study are of importance in DSD parameterizations that are essential to a wide variety of applications such as radar rainfall retrievals and hydrologic models.


2016 ◽  
Author(s):  
Timothy H. Raupach ◽  
Alexis Berne

Abstract. A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific double-normalised DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.


2001 ◽  
Vol 5 (4) ◽  
pp. 615-628 ◽  
Author(s):  
R. Uijlenhoet

Abstract. The conversion of the radar reflectivity factor Z(mm6m-3) to rain rate R(mm h-1 ) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the purpose of this paper to explain that the fundamental reason for the existence of such power law relationships is the fact that Z and R are related to each other via the raindrop size distribution. To this end, the concept of the raindrop size distribution is first explained. Then, it is demonstrated that there exist two fundamentally different forms of the raindrop size distribution, one corresponding to raindrops present in a volume of air and another corresponding to those arriving at a surface. It is explained how Z and R are defined in terms of both these forms. Using the classical exponential raindrop size distribution as an example, it is demonstrated (1) that the definitions of Z and R naturally lead to power law Z–R relationships, and (2) how the coefficients of such relationships are related to the parameters of the raindrop size distribution. Numerous empirical Z–R relationships are analysed to demonstrate that there exist systematic differences in the coefficients of these relationships and the corresponding parameters of the (exponential) raindrop size distribution between different types of rainfall. Finally, six consistent Z–R relationships are derived, based upon different assumptions regarding the rain rate dependence of the parameters of the (exponential) raindrop size distribution. An appendix shows that these relationships are in fact special cases of a general Z–R relationship that follows from a recently proposed scaling framework for describing raindrop size distributions and their properties. Keywords: radar hydrology, raindrop size distribution, radar reflectivity–rain rate relationship


Sign in / Sign up

Export Citation Format

Share Document