scholarly journals Wind Effects on the Shape of Raindrop Size Distribution

2017 ◽  
Vol 18 (5) ◽  
pp. 1285-1303 ◽  
Author(s):  
Firat Y. Testik ◽  
Bin Pei

Abstract The wind effects on the shape of drop size distribution (DSD) and the driving microphysical processes for the DSD shape evolution were investigated using the dataset from the Midlatitude Continental Convective Clouds Experiment (MC3E). The quality-controlled DSD spectra from MC3E were grouped for each of the rainfall events by considering the precipitation type (stratiform vs convective) and liquid water content for the analysis. The DSD parameters (e.g., mass-weighted mean diameter) and the fitted DSD slopes for these grouped spectra showed statistically significant trends with varying wind speed. Increasing wind speeds were observed to modify the DSD shapes by increasing the number of small drops and decreasing the number of large drops, indicating that the raindrop breakup process governs the DSD shape evolution. Both spontaneous and collisional raindrop breakup modes were analyzed to elucidate the process responsible for the DSD shape evolution with varying wind speed. The analysis revealed that the collisional breakup process controls the wind-induced DSD shape. The findings of this study are of importance in DSD parameterizations that are essential to a wide variety of applications such as radar rainfall retrievals and hydrologic models.

Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 319 ◽  
Author(s):  
Patrick Gatlin ◽  
Walter Petersen ◽  
Kevin Knupp ◽  
Lawrence Carey

Vertical variability in the raindrop size distribution (RSD) can disrupt the basic assumption of a constant rain profile that is customarily parameterized in radar-based quantitative precipitation estimation (QPE) techniques. This study investigates the utility of melting layer (ML) characteristics to help prescribe the RSD, in particular the mass-weighted mean diameter (Dm), of stratiform rainfall. We utilize ground-based polarimetric radar to map the ML and compare it with Dm observations from the ground upwards to the bottom of the ML. The results show definitive proof that a thickening, and to a lesser extent a lowering, of the ML causes an increase in raindrop diameter below the ML that extends to the surface. The connection between rainfall at the ground and the overlying microphysics in the column provide a means for improving radar QPE at far distances from a ground-based radar or close to the ground where satellite-based radar rainfall retrievals can be ill-defined.


2012 ◽  
Vol 51 (4) ◽  
pp. 780-785 ◽  
Author(s):  
Joël Jaffrain ◽  
Alexis Berne

AbstractThis work aims at quantifying the variability of the parameters of the power laws used for rain-rate estimation from radar data, on the basis of raindrop size distribution measurements over a typical weather radar pixel. Power laws between the rain rate and the reflectivity or the specific differential phase shift are fitted to the measured values, and the variability of the parameters is analyzed. At the point scale, the variability within this radar pixel cannot be solely explained by the sampling uncertainty associated with disdrometer measurements. When parameters derived from point measurements are applied at the radar pixel scale, the resulting error in the rain amount varies between −2% and +15%.


2020 ◽  
Vol 37 (2) ◽  
pp. 229-242 ◽  
Author(s):  
Robert Conrick ◽  
Joseph P. Zagrodnik ◽  
Clifford F. Mass

AbstractRadar retrievals of drop size distribution (DSD) parameters are developed and evaluated over the mountainous Olympic Peninsula of Washington State. The observations used to develop retrievals were collected during the 2015/16 Olympic Mountain Experiment (OLYMPEX) and included the NASA S-band dual-polarimetric (NPOL) radar and a collection of second-generation Particle Size and Velocity (PARSIVEL2) disdrometers over the windward slopes of the barrier. Nonlinear and random forest regressions are applied to the PARSIVEL2 data to develop retrievals for median volume diameter, liquid water content, and rain rate. Improvement in DSD retrieval accuracy, defined by the mean error of the retrieval relative to PARSIVEL2 observations, was achieved when using the random forest model when compared with nonlinear regression. Evaluation of disdrometer observations and the retrievals from NPOL indicate that the radar retrievals can accurately reproduce observed DSDs in this region, including the common wintertime regime of small but numerous raindrops that is important there. NPOL retrievals during the OLYMPEX period are further evaluated using two-dimensional video disdrometers (2DVD) and vertically pointing Micro Rain Radars. Results indicate that radar retrievals using random forests may be skillful in capturing DSD characteristics in the lowest portions of the atmosphere.


2019 ◽  
Vol 23 (10) ◽  
pp. 4153-4170 ◽  
Author(s):  
Yu Ma ◽  
Guangheng Ni ◽  
Chandrasekar V. Chandra ◽  
Fuqiang Tian ◽  
Haonan Chen

Abstract. Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation, especially in complex terrain or urban environments which are known for complicated rainfall mechanism and high spatial and temporal variability. In this study, the DSD characteristics of rainy seasons in the Beijing urban area are extensively investigated using 5-year DSD observations from a Parsivel2 disdrometer located at Tsinghua University. The results show that the DSD samples with rain rate < 1 mm h−1 account for more than half of total observations. The mean values of the normalized intercept parameter (log 10Nw) and the mass-weighted mean diameter (Dm) of convective rain are higher than that of stratiform rain, and there is a clear boundary between the two types of rain in terms of the scattergram of log 10Nw versus Dm. The convective rain in Beijing is neither continental nor maritime, owing to the particular location and local topography. As the rainfall intensity increases, the DSD spectra become higher and wider, but they still have peaks around diameter D∼0.5 mm. The midsize drops contribute most towards accumulated rainwater. The Dm and log 10Nw values exhibit a diurnal cycle and an annual cycle. In addition, at the stage characterized by an abrupt rise of urban heat island (UHI) intensity as well as the stage of strong UHI intensity during the day, DSD shows higher Dm values and lower log 10Nw values. The localized radar reflectivity (Z) and rain rate (R) relations (Z=aRb) show substantial differences compared to the commonly used NEXRAD relationships, and the polarimetric radar algorithms R(Kdp), R(Kdp, ZDR), and R(ZH, ZDR) show greater potential for rainfall estimation.


2018 ◽  
Vol 10 (8) ◽  
pp. 1179 ◽  
Author(s):  
Guang Wen ◽  
Haonan Chen ◽  
Guifu Zhang ◽  
Jiming Sun

This paper proposes an inverse model for raindrop size distribution (DSD) retrieval with polarimetric radar variables. In this method, a forward operator is first developed based on the simulations of monodisperse raindrops using a T-matrix method, and then approximated with a polynomial function to generate a pseudo training dataset by considering the maximum drop diameter in a truncated Gamma model for DSD. With the pseudo training data, a nearest-neighborhood method is optimized in terms of mass-weighted diameter and liquid water content. Finally, the inverse model is evaluated with simulated and real radar data, both of which yield better agreement with disdrometer observations compared to the existing Bayesian approach. In addition, the rainfall rate derived from the DSD by the inverse model is also improved when compared to the methods using the power-law relations.


2008 ◽  
Vol 136 (5) ◽  
pp. 1669-1685 ◽  
Author(s):  
Ali Tokay ◽  
Paul G. Bashor ◽  
Emad Habib ◽  
Takis Kasparis

Abstract Characteristics of the raindrop size distribution in seven tropical cyclones have been studied through impact-type disdrometer measurements at three different sites during the 2004–06 Atlantic hurricane seasons. One of the cyclones has been observed at two different sites. High concentrations of small and/or midsize drops were observed in the presence or absence of large drops. Even in the presence of large drops, the maximum drop diameter rarely exceeded 4 mm. These characteristics of raindrop size distribution were observed in all stages of tropical cyclones, unless the storm was in the extratropical stage where the tropical cyclone and a midlatitude frontal system had merged. The presence of relatively high concentrations of large drops in extratropical cyclones resembled the size distribution in continental thunderstorms. The integral rain parameters of drop concentration, liquid water content, and rain rate at fixed reflectivity were therefore lower in extratropical cyclones than in tropical cyclones. In tropical cyclones, at a disdrometer-calculated reflectivity of 40 dBZ, the number concentration was 700 ± 100 drops m−3, while the liquid water content and rain rate were 0.90 ± 0.05 g m−3 and 18.5 ± 0.5 mm h−1, respectively. The mean mass diameter, on the other hand, was 1.67 ± 0.3 mm. The comparison of raindrop size distributions between Atlantic tropical cyclones and storms that occurred in the central tropical Pacific island of Roi-Namur revealed that the number density is slightly shifted toward smaller drops, resulting in higher-integral rain parameters and lower mean mass and maximum drop diameters at the latter site. Considering parameterization of the raindrop size distribution in tropical cyclones, characteristics of the normalized gamma distribution parameters were examined with respect to reflectivity. The mean mass diameter increased rapidly with reflectivity, while the normalized intercept parameter had an increasing trend with reflectivity. The shape parameter, on the other hand, decreased in a reflectivity range from 10 to 20 dBZ and remained steady at higher reflectivities. Considering the repeatability of the characteristics of the raindrop size distribution, a second impact disdrometer that was located 5.3 km away from the primary site in Wallops Island, Virginia, had similar size spectra in selected tropical cyclones.


2019 ◽  
Author(s):  
Yu Ma ◽  
Guangheng Ni ◽  
V. Chandrasekar ◽  
Fuqiang Tian ◽  
Haonan Chen

Abstract. Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation, especially in complex terrain or urban environment which is known for its complicated rainfall mechanism and high spatial and temporal variability. In this study, the DSD characteristics of rainy seasons in Beijing urban area are extensively investigated using 5-year DSD observations from a Parsivel2 disdrometer located at Tsinghua University. The results show that the DSD samples with rain rate < 1 mm h−1 account for more than half of total observations. The mean values of log10 Nw and Dm of convective rain are higher than that of stratiform rain, and there is a clear boundary between the two types of rain in terms of the scattergram of log10Nw versus Dm. The convective rain in Beijing is neither continental nor maritime owing to the particular location and local topography. As the rainfall intensity increases, the DSD spectra become higher and wider, but they still have peaks around diameter D ~ 0.5 mm. The midsize drops contribute most towards accumulated rainwater. The Dm and log10Nw values show a diurnal cycle and an annual cycle. In addition, DSD shows higher Dm values and lower log10Nw values during the periods of strong urban heat island (UHI) effect and UHI up stage of a day, and the same in July and August. The localized radar reflectivity (Z) and rain rate (R) relations (Z = aRb) show substantial differences compared to the commonly used NEXRAD relationships. And the polarimetric radar algorithms R(Kdp), R(Kdp, ZDR), and R(ZH, ZDR) show greater potential for rainfall estimation.


2013 ◽  
Vol 30 (8) ◽  
pp. 1672-1690 ◽  
Author(s):  
Ali Tokay ◽  
Walter A. Petersen ◽  
Patrick Gatlin ◽  
Matthew Wingo

Abstract An impact-type Joss–Waldvogel disdrometer (JWD), a two-dimensional video disdrometer (2DVD), and a laser optical OTT Particle Size and Velocity (PARSIVEL) disdrometer (PD) were used to measure the raindrop size distribution (DSD) over a 6-month period in Huntsville, Alabama. Comparisons indicate event rain totals for all three disdrometers that were in reasonable agreement with a reference rain gauge. In a relative sense, hourly composite DSDs revealed that the JWD was more sensitive to small drops (&lt;1 mm), while the PD appeared to severely underestimate small drops less than 0.76 mm in diameter. The JWD and 2DVD measured comparable number concentrations of midsize drops (1–3 mm) and large drops (3–5 mm), while the PD tended to measure relatively higher drop concentrations at sizes larger than 2.44 mm in diameter. This concentration disparity tended to occur when hourly rain rates and drop counts exceeded 2.5 mm h−1 and 400 min−1, respectively. Based on interactions with the PD manufacturer, the partially inhomogeneous laser beam is considered the cause of the PD drop count overestimation. PD drop fall speeds followed the expected terminal fall speed relationship quite well, while the 2DVD occasionally measured slower drops for diameters larger than 2.4 mm, coinciding with events where wind speeds were greater than 4 m s−1. The underestimation of small drops by the PD had a pronounced effect on the intercept and shape of parameters of gamma-fitted DSDs, while the overestimation of midsize and larger drops resulted in higher mean values for PD integral rain parameters.


2008 ◽  
Vol 47 (1) ◽  
pp. 223-239 ◽  
Author(s):  
S. Joseph Munchak ◽  
Ali Tokay

Abstract Observations of raindrop size distributions (DSDs) have validated the use of three-parameter distribution functions in representing the observed spectra. However, dual-frequency radar measurements are limited to retrieving two independent parameters of the DSD, thus requiring a constraint on a three-parameter distribution. In this study, disdrometer observations from a variety of climate regions are employed to develop constraints on the gamma distribution that are optimized for dual-frequency radar rainfall retrievals. These observations are composited by reflectivity, and then gamma parameters are fit to the composites. The results show considerable variability in shape parameter between regions and within a region at different reflectivities. Most notable is that oceanic regions exhibit maxima in shape parameter at 13.6-GHz reflectivities between 40 and 50 dBZ, in contrast to continental regions. The shape parameter and slope parameter of all composite DSDs are poorly correlated. Thus, constraints of a constant shape parameter or shape parameter–slope parameter relationship are inadequate to represent the observed variability. However, the shape and slope parameters are highly correlated at a given reflectivity. Constraints of a fixed shape parameter and relationships between a shape parameter m and slope parameter Λ, both of which are given as functions of 13.6-GHz reflectivity, are applied to retrieve rain rate, liquid water content, and mean mass diameter from the composites. The m–Λ relationships perform best at high reflectivity (dBZ13.6 &gt; 35), whereas the fixed shape parameter generally results in lower error at medium and low reflectivities (dBZ13.6 &lt; 35). All calculations have been made under the assumption that the reflectivity measurements have been corrected for attenuation.


Sign in / Sign up

Export Citation Format

Share Document