An Enhanced Geostationary Satellite–Based Convective Initiation Algorithm for 0–2-h Nowcasting with Object Tracking

2012 ◽  
Vol 51 (11) ◽  
pp. 1931-1949 ◽  
Author(s):  
John R. Walker ◽  
Wayne M. MacKenzie ◽  
John R. Mecikalski ◽  
Christopher P. Jewett

AbstractThis paper describes an enhanced 0–2-h convective initiation (CI) nowcasting algorithm known as Satellite Convection Analysis and Tracking, version 2 (SATCASTv2). Tracking of developing cumulus cloud “objects” in advance of CI was developed as a means of reducing errors caused by tracking single satellite pixels of cumulus clouds, as identified in Geostationary Operational Environmental Satellite (GOES) output. The method rests on the idea that cloud objects at one time, when extrapolated forward in space and time using mesoscale atmospheric motion vectors, will overlap with the same actual cloud objects at a later time. Significant overlapping confirms that a coherent cumulus cloud is present and trackable in GOES data and that it is persistent enough that various infrared threshold–based tests may be performed to assess cloud growth. Validation of the new object-tracking approach to nowcasting CI was performed over four regions in the United States: 1) Melbourne, Florida; 2) Memphis, Tennessee; 3) the central United States/Great Plains; and 4) the northeastern United States as a means of evaluating algorithm performance in various convective environments. In this study, 9943 CI nowcasts and 804 CI events were analyzed. Optimal results occurred in the central U.S./Great Plains domain, where the probability of detection (POD) and false-alarm ratio (FAR) reached 85% and 55%, respectively, for tracked cloud objects. The FARs were partially attributed to difficulties inherent to the CI nowcasting problem. PODs were seen to decrease for CI events in Florida. Discussion is provided on how SATCASTv2 performed, as well as on how certain problems may be mitigated, especially in light of enhanced geostationary-satellite systems.

2020 ◽  
Vol 21 (7) ◽  
pp. 1469-1484
Author(s):  
Yafang Zhong ◽  
Jason A. Otkin ◽  
Martha C. Anderson ◽  
Christopher Hain

AbstractDespite the key importance of soil moisture–evapotranspiration (ET) coupling in the climate system, limited availability of soil moisture and ET observations poses a major impediment for investigation of this coupling regarding spatiotemporal characteristics and potential modifications under climate change. To better understand and quantify soil moisture–ET coupling and relevant processes, this study takes advantage of in situ soil moisture observations from the U.S. Climate Reference Network (USCRN) for the time period of 2010–17 and a satellite-derived version of the evapotranspiration stress index (ESI), which represents anomalies in a normalized ratio of actual to reference ET. The analyses reveal strong seasonality and regional characteristics of the ESI–land surface interactions across the United States, with the strongest control of soil moisture on the ESI found in the southern Great Plains during spring, and in the north-central United States, the northern Great Plains, and the Pacific Northwest during summer. In drier climate regions such as the northern Great Plains and north-central United States, soil moisture control on the ESI is confined to surface soil layers, with subsurface soil moisture passively responding to changes in the ESI. The soil moisture–ESI interaction is more uniform between surface and subsurface soils in wetter regions with higher vegetation cover. These results provide a benchmark for simulation of soil moisture–ET coupling and are useful for projection of associated climate processes in the future.


Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 15-19 ◽  
Author(s):  
D. L. Long ◽  
K. J. Leonard ◽  
M. E. Hughes

Isolates of Puccinia triticina were obtained from wheat leaf collections made by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, and Gulf Coast states in 1999. Pathogenic races were determined from virulence/avirulence phenotypes on 14 host lines that are near-isogenic for leaf rust resistance. We found 58 races among 1,180 isolates in 1999. As in previous surveys, regional race distribution patterns showed that the central United States is a single epidemiological unit distinct from the eastern United States. The distinctive racial composition of collections from the Southeast, Northeast, and Ohio Valley indicates that populations of P. triticina in those areas are not closely connected, suggesting epidemics originate from localized overwintering sources.


2020 ◽  
Vol 33 (23) ◽  
pp. 10263-10286 ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Tomáš Púčik ◽  
Kimberly A. Hoogewind ◽  
Harold E. Brooks

AbstractIn this study we investigate convective environments and their corresponding climatological features over Europe and the United States. For this purpose, National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) data, ERA5 hybrid-sigma levels, and severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data were combined on a common grid of 0.25° and 1-h steps over the period 1979–2018. The severity of convective hazards increases with increasing instability and wind shear (WMAXSHEAR), but climatological aspects of these features differ over both domains. Environments over the United States are characterized by higher moisture, CAPE, CIN, wind shear, and midtropospheric lapse rates. Conversely, 0–3-km CAPE and low-level lapse rates are higher over Europe. From the climatological perspective severe thunderstorm environments (hours) are around 3–4 times more frequent over the United States with peaks across the Great Plains, Midwest, and Southeast. Over Europe severe environments are the most common over the south with local maxima in northern Italy. Despite having lower CAPE (tail distribution of 3000–4000 J kg−1 compared to 6000–8000 J kg−1 over the United States), thunderstorms over Europe have a higher probability for convective initiation given a favorable environment. Conversely, the lowest probability for initiation is observed over the Great Plains, but, once a thunderstorm develops, the probability that it will become severe is much higher compared to Europe. Prime conditions for severe thunderstorms over the United States are between April and June, typically from 1200 to 2200 central standard time (CST), while across Europe favorable environments are observed from June to August, usually between 1400 and 2100 UTC.


Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1334-1341 ◽  
Author(s):  
D. L. Long ◽  
K. J. Leonard ◽  
M. E. Hughes

Isolates of Puccinia triticina were obtained from wheat leaf collections made by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, and Gulf Coast states in 1996, 1997, and 1998. Virulence-avirulence phenotypes were determined on 14 host lines that are near-isogenic for leaf rust resistance. We found 31 phenotypes among 277 single uredinial isolates in 1996, 56 phenotypes among 989 isolates in 1997, and 43 phenotypes among 989 isolates in 1998. As in previous surveys, regional race distribution patterns showed that the central United States is a single epidemiological unit distinct from the eastern United States. The distinctive racial composition of collections from the southeast, northeast, and Ohio Valley indicate that populations of P. triticina in those areas are not closely connected, suggesting that epidemics originate from localized overwintering sources.


2015 ◽  
Vol 16 (5) ◽  
pp. 1946-1961 ◽  
Author(s):  
Ahmed B. Tawfik ◽  
Paul A. Dirmeyer ◽  
Joseph A. Santanello

Abstract This is Part II of a two-part study introducing the heated condensation framework (HCF), which quantifies the potential convective state of the atmosphere in terms of land–atmosphere interactions. Part I introduced the full suite of HCF variables and applied them to case studies with observations and models over a single location in the southern Great Plains. It was shown in Part I that the HCF was capable of identifying locally initiated convection and quantifying energetically favorable pathways for initiation. Here, the HCF is applied to the entire conterminous United States and the climatology of convective initiation (CI) in relation to local land–atmosphere coupling (LoCo) is explored for 34 summers (June–August) using the North American Regional Reanalysis (NARR) and observations. NARR is found to be capable of capturing the convective threshold (buoyant mixing potential temperature θBM) and energy advantage transition (energy advantage potential temperature θadv) for most of the United States. However, there are compensating biases in the components of moisture qmix and temperature q*, resulting in low θBM biases for the wrong reason. The HCF has been used to show that local CI occurred over the Rocky Mountains and the southern Great Plains 35%–65% of the time. Finally, the LoCo process chain has been recast in light of the HCF. Both positive and negative soil moisture–convective feedbacks are possible, with negative feedbacks producing a stronger response in CI likelihood under weak convective inhibition. Positive feedbacks are present but weaker.


Author(s):  
Anthony DeAngelis ◽  
Francina Dominguez ◽  
Ying Fan ◽  
Alan Robock ◽  
M. Deniz Kustu ◽  
...  

Author(s):  
Sarah L. Jackson ◽  
Sahar Derakhshan ◽  
Leah Blackwood ◽  
Logan Lee ◽  
Qian Huang ◽  
...  

This paper examines the spatial and temporal trends in county-level COVID-19 cases and fatalities in the United States during the first year of the pandemic (January 2020–January 2021). Statistical and geospatial analyses highlight greater impacts in the Great Plains, Southwestern and Southern regions based on cases and fatalities per 100,000 population. Significant case and fatality spatial clusters were most prevalent between November 2020 and January 2021. Distinct urban–rural differences in COVID-19 experiences uncovered higher rural cases and fatalities per 100,000 population and fewer government mitigation actions enacted in rural counties. High levels of social vulnerability and the absence of mitigation policies were significantly associated with higher fatalities, while existing community resilience had more influential spatial explanatory power. Using differences in percentage unemployment changes between 2019 and 2020 as a proxy for pre-emergent recovery revealed urban counties were hit harder in the early months of the pandemic, corresponding with imposed government mitigation policies. This longitudinal, place-based study confirms some early urban–rural patterns initially observed in the pandemic, as well as the disparate COVID-19 experiences among socially vulnerable populations. The results are critical in identifying geographic disparities in COVID-19 exposures and outcomes and providing the evidentiary basis for targeting pandemic recovery.


Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by USDA-ARS personnel and cooperators in the Great Plains, Ohio River Valley, and southeastern states in order to determine the virulence of the wheat leaf rust population in 2013. Single uredinial isolates (490 total) were derived from the collections and tested for virulence phenotype on 20 lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes. In 2013, 79 virulence phenotypes were described in the United States. Virulence phenotypes MBTNB, TNBGJ, and MCTNB were the three most common phenotypes. Phenotypes MBTNB and MCTNB are both virulent to Lr11, and MCTNB is virulent to Lr26. MBTNB and MCTNB were most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Isolates with virulence to Lr11, Lr18, and Lr26 were common in the southeastern states and Ohio Valley region. Isolates with virulence to Lr21, Lr24, and Lr39/41 were frequent in the hard red wheat region of the southern and northern Great Plains.


Sign in / Sign up

Export Citation Format

Share Document