scholarly journals WRF Simulations of the Urban Circulation in the Salt Lake City Area for CO2 Modeling

2013 ◽  
Vol 52 (2) ◽  
pp. 323-340 ◽  
Author(s):  
Thomas Nehrkorn ◽  
John Henderson ◽  
Mark Leidner ◽  
Marikate Mountain ◽  
Janusz Eluszkiewicz ◽  
...  

AbstractA recent National Research Council report highlighted the potential utility of atmospheric observations and models for detecting trends in concentrated emissions from localized regions, such as urban areas. The Salt Lake City (SLC), Utah, area was chosen for a pilot study to determine the feasibility of using ground-based sensors to identify trends in anthropogenic urban emissions over a range of time scales (from days to years). The Weather Research and Forecasting model (WRF) was combined with a Lagrangian particle dispersion model and an emission inventory to model carbon dioxide (CO2) concentrations that can be compared with in situ measurements. An accurate representation of atmospheric transport requires a faithful modeling of the meteorological conditions. This study examines in detail the ability of different configurations of WRF to reproduce the observed local and mesoscale circulations, and the diurnal evolution of the planetary boundary layer (PBL) in the SLC area. Observations from the Vertical Transport and Mixing field experiment in 2000 were used to examine the sensitivity of WRF results to changes in the PBL parameterization and to the inclusion of an urban canopy model (UCM). Results show that for urban locations there is a clear benefit from parameterizing the urban canopy for simulation of the PBL and near-surface conditions, particularly for temperature evolution at night. Simulation of near-surface CO2 concentrations for a 2-week period in October 2006 showed that running WRF at high resolution (1.33 km) and with a UCM also improves the simulation of observed increases in CO2 during the early evening.

2005 ◽  
Vol 44 (4) ◽  
pp. 485-501 ◽  
Author(s):  
Joseph C. Chang ◽  
Steven R. Hanna ◽  
Zafer Boybeyi ◽  
Pasquale Franzese

Abstract After the terrorist incidents on 11 September 2001, there is a greatly heightened concern about the potential impacts of acts of terrorism involving the atmospheric release of chemical, biological, radiological, and nuclear (CBRN) materials in urban areas. In response to the need for an urban CBRN model, the Urban Hazard Prediction Assessment Capability (Urban HPAC) transport and dispersion model has been developed. Because HPAC is widely used by the Department of Defense community for planning, training, and operational and tactical purposes, it is of great importance that the new model be adequately evaluated with urban datasets to demonstrate its accuracy. This paper describes evaluations of Urban HPAC using the “URBAN 2000” urban tracer and meteorological field experiment data from Salt Lake City, Utah. Four Urban HPAC model configuration options and five plausible meteorological input data options—ranging from data-sparse to data-rich scenarios—were considered in the study, thus leading to a total of 20 possible model combinations. For the maximum concentrations along each sampling arc for each intensive operating period (IOP), the 20 Urban HPAC model combinations gave consistent mean overpredictions of about 50%, with a range over the 20 model combinations from no overprediction to a factor-of-4 overprediction in the mean. The median of the random scatter for the 20 model combinations was about a factor of 3 of the mean, with a range over the 20 model combinations between a factor of about 2 and 9. These performance measures satisfy previously established acceptance criteria for dispersion models.


2008 ◽  
Vol 47 (11) ◽  
pp. 2857-2878 ◽  
Author(s):  
Dennis Finn ◽  
Kirk L. Clawson ◽  
Roger G. Carter ◽  
Jason D. Rich ◽  
K. Jerry Allwine

Abstract The URBAN 2000 experiments were conducted in the complex urban and topographical terrain in Salt Lake City, Utah, in stable nighttime conditions. Unexpected plume dispersion often arose because of the interaction of complex terrain and mountain–valley flow dynamics, drainage flows, synoptic influences, and urban canopy effects, all within a nocturnal boundary layer. It was found that plume dispersion was strongly influenced by topography, that dispersion can be significantly different than what might be expected based upon the available wind data, and that it is problematic to rely on any one urban-area wind measurement to predict or anticipate dispersion. Small-scale flows can be very important in dispersion, and their interaction with the larger-scale flow field needs to be carefully considered. Some of the anomalies observed include extremely slow dispersion, complicated recirculation dispersion patterns in which plume transport was in directions opposed to the measured winds, and flow decoupling. Some of the plume dispersion anomalies could only be attributed to small-scale winds that were not resolved by the existing meteorological monitoring network. The results shown will make clear the difficulties in modeling or planning for emergency response to toxic releases in a nocturnal urban boundary layer within complex terrain.


2003 ◽  
Vol 37 (36) ◽  
pp. 5069-5082 ◽  
Author(s):  
Steven R. Hanna ◽  
Rex Britter ◽  
Pasquale Franzese

2021 ◽  
Vol 9 ◽  
Author(s):  
Nathan A. Toké ◽  
Joseph Phillips ◽  
Christopher Langevin ◽  
Emily Kleber ◽  
Christopher B. DuRoss ◽  
...  

How structural segment boundaries modulate earthquake behavior is an important scientific and societal question, especially for the Wasatch fault zone (WFZ) where urban areas lie along multiple fault segments. The extent to which segment boundaries arrest ruptures, host moderate magnitude earthquakes, or transmit ruptures to adjacent fault segments is critical for understanding seismic hazard. To help address this outstanding issue, we conducted a paleoseismic investigation at the Traverse Ridge paleoseismic site (TR site) along the ∼7-km-long Fort Canyon segment boundary, which links the Provo (59 km) and Salt Lake City (40 km) segments of the WFZ. At the TR site, we logged two trenches which were cut across sub-parallel traces of the fault, separated by ∼175 m. Evidence from these exposures leads us to infer that at least 3 to 4 earthquakes have ruptured across the segment boundary in the Holocene. Radiocarbon dating of soil material developed below and above fault scarp colluvial packages and within a filled fissure constrains the age of the events. The most recent event ruptured the southern fault trace between 0.2 and 0.4 ka, the penultimate event ruptured the northern fault trace between 0.6 and 3.4 ka, and two prior events occurred between 1.4 and 6.2 ka (on the southern fault trace) and 7.2 and 8.1 ka (northern fault trace). Colluvial wedge heights of these events ranged from 0.7 to 1.2 m, indicating the segment boundary experiences surface ruptures with more than 1 m of vertical displacement. Given these estimates, we infer that these events were greater than Mw 6.7, with rupture extending across the entire segment boundary and portions of one or both adjacent fault segments. The Holocene recurrence of events at the TR site is lower than the closest paleoseismic sites at the adjacent fault segment endpoints. The contrasts in recurrence rates observed within 15 km of the Fort Canyon fault segment boundary may be explained conceptually by a leaky segment boundary model which permits spillover events, ruptures centered on the segment boundary, and segmented ruptures. The TR site demonstrates the utility of paleoseismology within segment boundaries which, through corroboration of displacement data, can demonstrate rupture connectivity between fault segments and test the validity of rupture models.


2018 ◽  
Author(s):  
Richard P. Fiorella ◽  
Ryan Bares ◽  
John C. Lin ◽  
James R. Ehleringer ◽  
Gabriel J. Bowen

Abstract. Water emitted during combustion may comprise a significant portion of ambient humidity (> 10 %) in urban areas, where combustion emissions are strongly focused in space and time. Stable water vapor isotopes can be used to apportion measured humidity values between atmospherically transported and combustion-derived water vapor, as combustion vapor possesses an unusually negative deuterium excess value (d-excess, d = δ2H − 8δ18O). We investigated the relationship between d-excess of atmospheric vapor, ambient CO2 concentrations, and atmospheric stability across four winters in Salt Lake City, UT. We found a robust inverse relationship between CO2 excess above background and d-excess on sub-diurnal to seasonal timescales, which was most prominent during periods of strong atmospheric stability that occur during Salt Lake City winter. We developed a framework for partitioning changes in water vapor d-excess between advective changes in vapor and the addition of combustion derived vapor. Using a Keeling-style mixing model approach, we estimated the d-excess of combustion derived vapor in Salt Lake City to be between −125 ‰ and −308 ‰, broadly consistent with theoretical estimates. Moreover, our analysis highlights that changes in the observed d-excess during periods of high atmospheric stability cannot be explained without a vapor source possessing a strongly negative d-excess value. Further refinements in our estimate of the isotopic composition of combustion derived vapor require constraints on valley-scale stoichiometry between CO2 and H2O in combustion products, yet our results demonstrate the utility of stable water vapor isotopes to constrain contributions of combustion to urban humidity and meteorology.


2018 ◽  
Vol 99 (11) ◽  
pp. 2325-2339 ◽  
Author(s):  
John C. Lin ◽  
Logan Mitchell ◽  
Erik Crosman ◽  
Daniel L. Mendoza ◽  
Martin Buchert ◽  
...  

AbstractUrban areas are responsible for a substantial proportion of anthropogenic carbon emissions around the world. As global populations increasingly reside in cities, the role of urban emissions in determining the future trajectory of carbon emissions is magnified. Consequently, a number of research efforts have been started in the United States and beyond, focusing on observing atmospheric carbon dioxide (CO2) and relating its variations to carbon emissions in cities. Because carbon emissions are intimately tied to socioeconomic activity through the combustion of fossil fuels, and many cities are actively adopting emission reduction plans, such urban carbon research efforts give rise to opportunities for stakeholder engagement and guidance on other environmental issues, such as air quality.This paper describes a research effort centered in the Salt Lake City, Utah, metropolitan region, which is the locus for one of the longest-running urban CO2 networks in the world. The Salt Lake City area provides a rich environment for studying anthropogenic emissions and for understanding the relationship between emissions and socioeconomic activity when the CO2 observations are enhanced with a) air quality observations, b) novel mobile observations from platforms on light-rail public transit trains and a news helicopter, c) dense meteorological observations, and d) modeling efforts that include atmospheric simulations and high-resolution emission inventories.Carbon dioxide and other atmospheric observations are presented, along with associated modeling work. Examples in which the work benefited from and contributed to the interests of multiple stakeholders (e.g., policymakers, air quality managers, municipal government, urban planners, industry, and the general public) are discussed.


Author(s):  
Daniel L Mendoza ◽  
Tabitha M Benney ◽  
Ryan Bares ◽  
Benjamin Fasoli ◽  
Corbin Anderson ◽  
...  

Every day around 93% of children under the age of 15 (1.8 billion children) breathe outdoor air that is so polluted it puts their health and development at serious risk. Due to the pandemic, however, ventilation of buildings using outdoor air has become an important safety technique to prevent the spread of COVID-19. With the mounting ev-idence suggesting that air pollution is impactful to human health and educational out-comes, this contradictory guidance may be problematic in schools with higher air pol-lution levels, but keeping kids COVID-19 free and in school to receive their education is now more pressing than ever. To understand if all schools in an urban area are ex-posed to similar outdoor air quality and if school infrastructure protects children equally indoors, we installed research grade sensors to observe PM2.5 concentrations in indoor and outdoor settings to understand how unequal exposure to indoor and out-door air pollution impacts indoor air quality among high- and low-income schools in Salt Lake City, Utah. Based on this approach, we found that during atmospheric inver-sions and dust events, there was a lag ranging between 35 to 73 minutes for the out-door PM2.5 concentrations to follow a similar temporal pattern as the indoor PM2.5. This lag has policy and health implications and may help to explain the rising concerns re-garding reduced educational outcomes related to air pollution in urban areas. These data and resulting analysis show that poor air quality may impact school settings, and the potential implications with respect to environmental inequality.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
P. Cristofanelli ◽  
F. Fierli ◽  
F. Graziosi ◽  
M. Steinbacher ◽  
C. Couret ◽  
...  

Tropospheric ozone (O3) is a greenhouse gas as well as a harmful air pollutant with adverse effects on human health and vegetation: The observation and attribution of its long-term variability are key activities to monitor the effectiveness of pollution reduction protocols. In this work, we present the analysis of multi-annual near-surface O3 (1996–2016) at the Mt. Cimone (CMN, Italian northern Apennines) WMO/GAW global station and the comparison with two “reference” high-mountain sites in Europe: Jungfraujoch (JFJ, Swiss Alps) and Mt. Zugspitze (ZUG/ZSF, German Alps). Negative O3 trends were observed at CMN over the period 1996–2016 (from –0.19 to –0.22 ppb yr–1), with the strongest tendencies as being observed for the warm months (May–September: –0.32 ppb yr–1 during daytime). The magnitude of the calculated O3 trends at CMN are 2 times higher than those calculated for ZUG/ZSF and 3–4 times higher than for JFJ. With respect to JFJ and ZUG/ZSF, higher O3 values were observed at CMN during 2004–2008, while good agreement is found for the remaining periods. We used Lagrangian simulations by the FLEXPART particle dispersion model and near-surface O3 data over different European regions, for investigating the possibility that the appearance of the O3 anomalies at CMN could be related to variability in the atmospheric transport or in near-surface O3 over specific source regions. Even if it was not possible to achieve a general robust explanation for the occurrence of the high O3 values at CMN during 2004–2008, the variability of (1) regional and long-range atmospheric transport at CMN and (2) European near-surface O3 could motivate the observed anomalies in specific seasons and years. Interestingly, we found a long-term variability in air mass transport at JFJ with enhanced (decreased) contributions from Western European (intercontinental regions).


Sign in / Sign up

Export Citation Format

Share Document