Prediction of Energy Dissipation Rates for Aviation Turbulence. Part I: Forecasting Nonconvective Turbulence

2017 ◽  
Vol 56 (2) ◽  
pp. 317-337 ◽  
Author(s):  
R. D. Sharman ◽  
J. M. Pearson

AbstractCurrent automated aviation turbulence forecast algorithms diagnose turbulence from numerical weather prediction (NWP) model output by identifying large values in computed horizontal or vertical spatial gradients of various atmospheric state variables (velocity; temperature) and thresholding these gradients empirically to indicate expected areas of “light,” “moderate,” and “severe” levels of aviation turbulence. This approach is obviously aircraft dependent and cannot accommodate the many different aircraft types that may be in the airspace. Therefore, it is proposed to provide forecasts of an atmospheric turbulence metric: the energy dissipation rate to the one-third power (EDR). A strategy is developed to statistically map automated turbulence forecast diagnostics or groups of diagnostics to EDR. The method assumes a lognormal distribution of EDR and uses climatological peak EDR data from in situ equipped aircraft in conjunction with the distribution of computed diagnostic values. These remapped values can then be combined to provide an ensemble mean EDR that is the final forecast. New mountain-wave-turbulence algorithms are presented, and the lognormal mapping is applied to them as well. The EDR forecasts are compared with aircraft in situ EDR observations and verbal pilot reports (converted to EDR) to obtain statistical performance metrics of the individual diagnostics and the ensemble mean. It is shown by one common performance metric, the area under the relative operating characteristics curve, that the ensemble mean provides better performance than forecasts from individual model diagnostics at all altitudes (low, mid-, and upper levels) and for two input NWP models.

2018 ◽  
Vol 99 (11) ◽  
pp. 2295-2311 ◽  
Author(s):  
Jung-Hoon Kim ◽  
Robert Sharman ◽  
Matt Strahan ◽  
Joshua W. Scheck ◽  
Claire Bartholomew ◽  
...  

AbstractFor the next generation of the World Area Forecast System (WAFS), the global Graphical Turbulence Guidance (G-GTG) has been developed using global numerical weather prediction (NWP) model outputs as an input to compute a set of turbulence diagnostics, identifying strong spatial gradients of meteorological variables associated with clear-air turbulence (CAT) and mountain-wave turbulence (MWT). The G-GTG provides an atmospheric turbulence intensity metric of energy dissipation rate (EDR) to the 1/3 power (m2/3 s–1), which is the International Civil Aviation Organization (ICAO) standard for aircraft reporting. Deterministic CAT and MWT EDR forecasts are derived from ensembles of calibrated multiple CAT and MWT diagnostics, respectively, with the final forecast provided by the gridpoint-by-gridpoint maximum of the CAT and MWT ensemble means. In addition, a probabilistic EDR forecast is produced by the percentage agreement of the individual CAT and MWT diagnostics that exceed a certain EDR threshold for turbulence (i.e., multidiagnostic ensemble). Objective evaluations of the G-GTG against global in situ EDR measurement data show that both deterministic and probabilistic G-GTG significantly improve the current WAFS CAT product, mainly because the G-GTG takes into account turbulence from various sources related to CAT and MWT. The probabilistic G-GTG forecast is more reliable at predicting light-or-greater (EDR > 0.15)- than moderate-or-greater (EDR > 0.22)-level turbulence, although it suffers from overforecasting. This will be improved in the future when we use this methodology with NWP ensembles and more observation data will be available for calibration. We expect that the new G-GTG forecasts will be beneficial to aviation users globally.


2020 ◽  
Author(s):  
Mingxiang Feng ◽  
Xin Ye ◽  
Miao Lin ◽  
Haining Zhou ◽  
Meng Huang ◽  
...  

Abstract Background Available biomarkers lack sensitivity for early lung cancer. Circulating genetically abnormal cells (CACs) occur early in tumorigenesis. To determine the diagnostic value of CACs in blood detected by 4-color fluorescence in situ hybridization (FISH) for lung cancer. Methods This was a prospective study of patients with pulmonary nodules ≤ 30 mm detected between 10/2019 and 01/2020 at four tertiary hospitals in China. All patients underwent a pathological examination of lung nodules found by imaging and were grouped as malignant and benign. CACs were detected by 4-color FISH. Patients were divided into the training and validation cohorts. Receiver operating characteristics analysis was used to analyze the diagnosis value of CACs. Results A total of 205 participants were enrolled. Using a cut-off value of ≥ 3, blood CACs achieved areas under the curve (AUCs) of 0.887, 0.823, and 0.823 for lung cancer in the training and validation cohorts, and all patients, respectively. CACs had high diagnostic values across all tumor sizes and imaging lesion types. CACs were decreased after surgery (median, 4 vs. 1, P < 0.001) in the validation set. The CAC status between blood and tissues was highly consistent (kappa = 0.909, P < 0.001). The AUC of CAC (0.823) was higher than that of CEA (0.478), SCC (0.516), NSE (0.506), ProGRP (0.519), and CYFRA21-1 (0.535) (all P < 0.001). Conclusions CACs might have a high value for the early diagnosis of lung cancer. These findings might need to be validated in future studies. Evidence suggested homology in genetic aberrations between the CACs and the tumor cells.


2021 ◽  
Author(s):  
Susheel Dharmadhikari ◽  
Amrita Basak

Abstract In this paper, three distinct energy dissipation metrics are proposed to enable fatigue damage detection in aluminum specimens. The metrics are (i) Energy Dissipation Rate, (ii) Cumulative Energy Dissipation, and (iii) Material Stiffness. They are created by using the force and displacement signals obtained from the fatigue testing apparatus during the testing of Al7075-T6 specimens. The apparatus is also equipped with a confocal microscope which calibrates the fatigue damage detection at a crack thickness of 10 μm, thereby, enabling precise detection in the short crack regime. Using all the three metrics, optimal thresholds are computed using receiver operating characteristics and the average accuracy of damage detection in quantified. Accordingly, the three metrics show an accuracy of 84.06%, 100%, and 84.32%, respectively in detecting the cracked specimens.


Author(s):  
W. D. Smyth ◽  
S. J. Warner ◽  
J. N. Moum ◽  
H. Pham ◽  
S. Sarkar

AbstractFactors thought to influence deep cycle turbulence in the equatorial Pacific are examined statistically for their predictive capacity using a 13-year moored record that includes microstructure measurements of the turbulent kinetic energy dissipation rate. Wind stress and mean current shear are found to be most predictive of the dissipation rate. Those variables, together with the solar buoyancy flux and the diurnal mixed layer thickness, are combined to make a pair of useful parameterizations. The uncertainty in these predictions is typically 50% greater than the uncertainty in present-day in situ measurements. To illustrate the use of these parameterizations, the record of deep cycle turbulence, measured directly since 2005, is extended back to 1990 based on historical mooring data. The extended record is used to refine our understanding of the seasonal variation of deep cycle turbulence.


2017 ◽  
Vol 56 (2) ◽  
pp. 339-351 ◽  
Author(s):  
J. M. Pearson ◽  
R. D. Sharman

AbstractIn addition to turbulence forecasts, which can be used for strategic planning for turbulence avoidance, short-term nowcasts can augment longer-term forecasts by providing much more timely and accurate turbulence locations for real-time tactical avoidance of turbulence hazards, especially those related to short-lived convection. This paper describes a turbulence-nowcasting algorithm that combines recent short-term turbulence forecasts with all currently available direct turbulence observations and inferences of turbulence from other sources. Building upon the need to provide forecasts that are aircraft independent, the nowcasts provide estimates of an atmospheric metric of turbulence, namely, the energy dissipation rate to the one-third power (EDR). Some observations directly provide EDR, such as in situ observations from select commercial aircraft and ground-based radar algorithm output, whereas others must be translated to EDR. A strategy is provided for mapping turbulence observations, such as pilot reports (PIREPs), and inferences from other relevant observational data sources, such as observed surface wind gusts, into EDR. These remapped observation values can then be combined with short-term turbulence forecasts and other convective diagnostics of turbulence to provide a turbulence nowcast of EDR in the national airspace. Case studies are provided to illustrate the algorithm procedure and benefits. The EDR nowcasts are compared with aircraft in situ EDR observations and PIREPs converted to EDR to obtain metrics of statistical performance. It is shown by one common performance metric, the area under the relative operating characteristic curve, that the turbulence nowcasts with assimilated observations considerably outperform the corresponding turbulence forecasts.


Author(s):  
Mingxiang Feng ◽  
Xin Ye ◽  
Baishen Chen ◽  
Juncheng Zhang ◽  
Miao Lin ◽  
...  

Abstract Purpose Available biomarkers lack sensitivity for an early lung cancer. Circulating genetically abnormal cells (CACs) occur early in tumorigenesis. To determine the diagnostic value of CACs in blood detected by 4-color fluorescence in situ hybridization (FISH) for lung cancer. Methods This was a prospective study of patients with pulmonary nodules ≤ 30 mm detected between 10/2019 and 01/2020 at four tertiary hospitals in China. All patients underwent a pathological examination of lung nodules found by imaging and were grouped as malignant and benign. CACs were detected by 4-color FISH. Patients were divided into the training and validation cohorts. Receiver operating characteristics analysis was used to analyze the diagnosis value of CACs. Results A total of 205 participants were enrolled. Using a cut-off value of ≥ 3, blood CACs achieved areas under the curve (AUCs) of 0.887, 0.823, and 0.823 for lung cancer in the training and validation cohorts, and all patients, respectively. CACs had high diagnostic values across all tumor sizes and imaging lesion types. CACs were decreased after surgery (median, 4 vs. 1, P < 0.001) in the validation set. The CAC status between blood and tissues was highly consistent (kappa = 0.909, P < 0.001). The AUC of CAC (0.823) was higher than that of CEA (0.478), SCC (0.516), NSE (0.506), ProGRP (0.519), and CYFRA21-1 (0.535) (all P < 0.001). Conclusion CACs might have a high value for the early diagnosis of lung cancer. These findings might need to be validated in future studies. Evidence suggested homology in genetic aberrations between the CACs and the tumor cells.


1991 ◽  
Vol 56 (9) ◽  
pp. 1856-1867 ◽  
Author(s):  
Zdzisław Jaworski ◽  
Ivan Fořt

Mechanical energy dissipation was investigated in a cylindrical, flat bottomed vessel with four radial baffles and the pitched blade turbine impeller of varied size. This study was based upon the experimental data on the hydrodynamics of the turbulent flow of water in an agitated vessel. They were gained by means of the three-holes Pitot tube technique for three impeller-to-vessel diameter ratio d/D = 1/3, 1/4 and 1/5. The experimental results obtained for two levels below and two levels above the impeller were used in the present study. Radial profiles of the mean velocity components, static and total pressures were presented for one of the levels. Local contribution to the axial transport of the agitated charge and energy was presented. Using the assumption of the axial symmetry of the flow field the volumetric flow rates were determined for the four horizontal cross-sections. Regions of positive and negative values of the total pressure of the liquid were indicated. Energy dissipation rates in various regions of the agitated vessel were estimated in the range from 0.2 to 6.0 of the average value for the whole vessel. Hydraulic impeller efficiency amounting to about 68% was obtained. The mechanical energy transferred by the impellers is dissipated in the following ways: 54% in the space below the impeller, 32% in the impeller region, 14% in the remaining part of the agitated liquid.


Sign in / Sign up

Export Citation Format

Share Document