Energy Dissipation Metrics for Fatigue Damage Detection in the Short Crack Regime for Aluminum Alloys

2021 ◽  
Author(s):  
Susheel Dharmadhikari ◽  
Amrita Basak

Abstract In this paper, three distinct energy dissipation metrics are proposed to enable fatigue damage detection in aluminum specimens. The metrics are (i) Energy Dissipation Rate, (ii) Cumulative Energy Dissipation, and (iii) Material Stiffness. They are created by using the force and displacement signals obtained from the fatigue testing apparatus during the testing of Al7075-T6 specimens. The apparatus is also equipped with a confocal microscope which calibrates the fatigue damage detection at a crack thickness of 10 μm, thereby, enabling precise detection in the short crack regime. Using all the three metrics, optimal thresholds are computed using receiver operating characteristics and the average accuracy of damage detection in quantified. Accordingly, the three metrics show an accuracy of 84.06%, 100%, and 84.32%, respectively in detecting the cracked specimens.

2017 ◽  
Vol 56 (2) ◽  
pp. 317-337 ◽  
Author(s):  
R. D. Sharman ◽  
J. M. Pearson

AbstractCurrent automated aviation turbulence forecast algorithms diagnose turbulence from numerical weather prediction (NWP) model output by identifying large values in computed horizontal or vertical spatial gradients of various atmospheric state variables (velocity; temperature) and thresholding these gradients empirically to indicate expected areas of “light,” “moderate,” and “severe” levels of aviation turbulence. This approach is obviously aircraft dependent and cannot accommodate the many different aircraft types that may be in the airspace. Therefore, it is proposed to provide forecasts of an atmospheric turbulence metric: the energy dissipation rate to the one-third power (EDR). A strategy is developed to statistically map automated turbulence forecast diagnostics or groups of diagnostics to EDR. The method assumes a lognormal distribution of EDR and uses climatological peak EDR data from in situ equipped aircraft in conjunction with the distribution of computed diagnostic values. These remapped values can then be combined to provide an ensemble mean EDR that is the final forecast. New mountain-wave-turbulence algorithms are presented, and the lognormal mapping is applied to them as well. The EDR forecasts are compared with aircraft in situ EDR observations and verbal pilot reports (converted to EDR) to obtain statistical performance metrics of the individual diagnostics and the ensemble mean. It is shown by one common performance metric, the area under the relative operating characteristics curve, that the ensemble mean provides better performance than forecasts from individual model diagnostics at all altitudes (low, mid-, and upper levels) and for two input NWP models.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1274
Author(s):  
Chunxia Yang ◽  
Ke Zhu ◽  
Yayan Liu ◽  
Yusheng Cai ◽  
Wencheng Liu ◽  
...  

In this paper, the fatigue energy dissipation of Gravity Casting (GC) and Laser-based Powder Bed Fusion (LPBF) AlSi10Mg alloys under cyclic loading are investigated. The increase in surface temperature related to the energy dissipation effect is decoupled and used to predict the fatigue limits of GC and LPBF AlSi10Mg alloys as being 55.8% UTS and 33.9% UTS, respectively. The energy dissipation rate is obtained by solving the one-dimensional thermal diffusion problem. This energy dissipation is separated into related and unrelated fatigue damage using polynomial function fitting. The energy dissipation related to fatigue damage for LPBF specimens is observed to be higher than that of GC specimens, which indicates worse fatigue performance. The fatigue damage entropy is employed to predict the fatigue life of both GC and LPBF AlSi10Mg alloys, which has a good agreement with the results of a traditional fatigue experiment.


1991 ◽  
Vol 56 (9) ◽  
pp. 1856-1867 ◽  
Author(s):  
Zdzisław Jaworski ◽  
Ivan Fořt

Mechanical energy dissipation was investigated in a cylindrical, flat bottomed vessel with four radial baffles and the pitched blade turbine impeller of varied size. This study was based upon the experimental data on the hydrodynamics of the turbulent flow of water in an agitated vessel. They were gained by means of the three-holes Pitot tube technique for three impeller-to-vessel diameter ratio d/D = 1/3, 1/4 and 1/5. The experimental results obtained for two levels below and two levels above the impeller were used in the present study. Radial profiles of the mean velocity components, static and total pressures were presented for one of the levels. Local contribution to the axial transport of the agitated charge and energy was presented. Using the assumption of the axial symmetry of the flow field the volumetric flow rates were determined for the four horizontal cross-sections. Regions of positive and negative values of the total pressure of the liquid were indicated. Energy dissipation rates in various regions of the agitated vessel were estimated in the range from 0.2 to 6.0 of the average value for the whole vessel. Hydraulic impeller efficiency amounting to about 68% was obtained. The mechanical energy transferred by the impellers is dissipated in the following ways: 54% in the space below the impeller, 32% in the impeller region, 14% in the remaining part of the agitated liquid.


2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


1998 ◽  
Vol 16 (12) ◽  
pp. 1607-1618 ◽  
Author(s):  
C. M. Hall ◽  
A. H. Manson ◽  
C. E. Meek

Abstract. The spring of 1997 has represented a stable period of operation for the joint University of Tromsø / University of Saskatchewan MF radar, being between refurbishment and upgrades. We examine the horizontal winds from the February to June inclusive and also include estimates of energy dissipation rates derived from signal fading times and presented as upper limits on the turbulent energy dissipation rate, ε. Here we address the periodicity in the dynamics of the upper mesosphere for time scales from hours to one month. Thus, we are able to examine the changes in the spectral signature of the mesospheric dynamics during the transition from winter to summer states.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides).


1994 ◽  
Vol 5 (4) ◽  
pp. 537-557 ◽  
Author(s):  
M. Bertsch ◽  
R. Dal Passo ◽  
R. Kersner

We study the semi-empirical b—ε model which describes the time evolution of turbulent spots in the case of equal diffusivity of the turbulent energy density b and the energy dissipation rate ε. We prove that the system of two partial differential equations possesses a solution, and that after some time this solution exhibits self-similar behaviour, provided that the system has self-similar solutions. The existence of such self-similar solutions depends upon the value of a parameter of the model.


Sign in / Sign up

Export Citation Format

Share Document