scholarly journals Urban Heat Island Mitigation Effectiveness under Extreme Heat Conditions in the Suzhou–Wuxi–Changzhou Metropolitan Area, China

2018 ◽  
Vol 57 (2) ◽  
pp. 235-253 ◽  
Author(s):  
Yan Chen ◽  
Ning Zhang

AbstractCool roofs and green roofs are two important methods used to mitigate the urban heat island (UHI) effect. The Weather Research and Forecasting Model was used to investigate the UHI effect and the effectiveness of cool and green roof mitigation strategies in the Suzhou–Wuxi–Changzhou metropolitan area during an extreme heat wave episode in the summer of 2013. Both urban land-cover change and anthropogenic heat releases exacerbated high temperatures in the urban area. Notably, urban land-cover change and anthropogenic heat release were responsible for 64% and 36% of the UHI intensity, respectively. Both cool and green roofs decreased near-surface air temperatures. The most dramatic decrease in near-surface air temperature occurred in the late morning; nocturnal air temperature decreased slightly because of the decrease in urban heat storage associated with the cool roof strategy. In addition, the UHI mitigation strategies affected the entire urban boundary layer. The decrease in the potential temperature and static stability created a stable urban boundary layer in which turbulent kinetic energy (TKE) decreased simultaneously. Analysis of an urban belt near a large water body showed that the decrease in the surface skin temperature difference between land and the water body weakened the daytime lake breeze. This effect was observed in both the inflow in the boundary layer and the return flow above the boundary layer, and it decreased the heat and moisture exchange between the lake and land boundary layers.

2017 ◽  
Vol 18 (11) ◽  
pp. 2991-3012 ◽  
Author(s):  
Ning Zhang ◽  
Yan Chen ◽  
Ling Luo ◽  
Yongwei Wang

Abstract Cool roofs and green roofs are two popular methods to mitigate the urban heat island and improve urban climates. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River delta, China, is investigated using the Weather Research and Forecasting (WRF) Model coupled with a physically based single-layer urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to a lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing the roof albedo to 0.7 caused a similar near-surface air temperature decrease as 50% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using a regional effect index. A regional impact was found for near-surface air temperature and specific/relative humidity when the percentage of roofs covered with high-albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.


2021 ◽  
Author(s):  
Shihan Chen ◽  
Yuanjian Yang ◽  
Fei Deng ◽  
Yanhao Zhang ◽  
Duanyang Liu ◽  
...  

Abstract. Due to rapid urbanization and intense human activities, the urban heat island (UHI) effect has become a more concerning climatic and environmental issue. A high spatial resolution canopy UHI monitoring method would help better understand the urban thermal environment. Taking the city of Nanjing in China as an example, we propose a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a Random Forest (RF) model. Firstly, the observed environmental parameters [e.g., surface albedo, land use/land cover, impervious surface, and anthropogenic heat flux (AHF)] around densely distributed meteorological stations were extracted from satellite images. These parameters were used as independent variables to construct an RF model for predicting air temperature. The correlation coefficient between the predicted and observed air temperature in the test set was 0.73, and the average root-mean-square error was 0.72 °C. Then, the spatial distribution of CUHII was evaluated at 30-m resolution based on the output of the RF model. We found that wind speed was negatively correlated with CUHII, and wind direction was strongly correlated with the CUHII offset direction. The CUHII reduced with the distance to the city center, due to the de-creasing proportion of built-up areas and reduced AHF in the same direction. The RF model framework developed for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII, as well as the spatial pattern of urban thermal environments.


2005 ◽  
Vol 44 (5) ◽  
pp. 591-605 ◽  
Author(s):  
Yeon-Hee Kim ◽  
Jong-Jin Baik

Abstract The spatial and temporal structure of the urban heat island in Seoul, Korea, is investigated using near-surface temperature data measured at 31 automatic weather stations (AWSs) in the Seoul metropolitan area for the 1-yr period from March 2001 to February 2002. The urban heat island in Seoul deviates considerably from an idealized, concentric heat island structure, mainly because of the location of the main commercial and industrial sectors and the local topography. Relatively warm regions extend in the east–west direction and relatively cold regions are located near the northern and southern mountains. Several warm cores are observed whose intensity, size, and location are found to vary seasonally and diurnally. Similar to previous studies, the urban heat island in Seoul is stronger in the nighttime than in the daytime and decreases with increasing wind speed and cloud cover, but it is least developed in summer. The average maximum urban heat island intensity is 2.2°C over the 1-yr period and it is 3.4°C at 0300 local standard time (LST) and 0.6°C at 1500 LST. The reversed urban heat island is occasionally observed in the afternoon, but its intensity is very weak. An empirical orthogonal function (EOF) analysis is performed to find the dominant modes of variability in the Seoul urban heat island. In the analysis using temperature data that are averaged for each hour of the 1-yr period, the first EOF explains 80.6% of the total variance and is a major diurnal mode. The second EOF, whose horizontal structure is positive in the eastern part of Seoul and is negative in the western part, explains 16.0% of the total variance. This mode is related to the land use type and the diurnal pattern of anthropogenic heat release. In the analysis using temperature data at 0300 LST, the leading four modes explain 72.4% of the total variance. The first EOF reflects that the weakest urban heat island intensity is in summer. It is found that the urban heat island in Seoul is stronger on weekdays than weekends.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Lei Jiang ◽  
Lixin Lu ◽  
Lingmei Jiang ◽  
Yuanyuan Qi ◽  
Aqiang Yang

The Town Energy Budget (TEB) model coupled with the Regional Atmospheric Modeling System (RAMS) is applied to simulate the Urban Heat Island (UHI) phenomenon in the metropolitan area of Beijing. This new model with complex and detailed surface conditions, called TEB-RAMS, is from Colorado State University (CSU) and the ASTER division of Mission Research Corporation. The spatial-temporal distributions of daily mean 2 m air temperature are simulated by TEB-RAMS during the period from 0000 UTC 01 to 0000 UTC 02 July 2003 over the area of 116°E~116.8°E, 39.6°N~40.2°N in Beijing. The TEB-RAMS was run with four levels of two-way nested grids, and the finest grid is at 1 km grid increment. An Anthropogenic Heat (AH) source is introduced into TEB-RAMS. A comparison between the Land Ecosystem-Atmosphere Feedback model (LEAF) and the detailed TEB parameterization scheme is presented. The daily variations and spatial distribution of the 2 m air temperature agree well with the observations of the Beijing area. The daily mean 2 m air temperature simulated by TEB-RAMS with the AH source is 0.6 K higher than that without specifying TEB and AH over the metropolitan area of Beijing. The presence of urban underlying surfaces plays an important role in the UHI formation. The geometric morphology of an urban area characterized by road, roof, and wall also seems to have notable effects on the UHI intensity. Furthermore, the land-use dataset from USGS is replaced in the model by a new land-use map for the year 2010 which is produced by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS). The simulated regional mean 2 m air temperature is 0.68 K higher from 01 to 02 July 2003 with the new land cover map.


2015 ◽  
Vol 54 (11) ◽  
pp. 2245-2259 ◽  
Author(s):  
Leiqiu Hu ◽  
Andrew J. Monaghan ◽  
Nathaniel A. Brunsell

AbstractExtreme heat is a leading cause of weather-related human mortality. The urban heat island (UHI) can magnify heat exposure in metropolitan areas. This study investigates the ability of a new MODIS-retrieved near-surface air temperature and humidity dataset to depict urban heat patterns over metropolitan Chicago, Illinois, during June–August 2003–13 under clear-sky conditions. A self-organizing mapping (SOM) technique is used to cluster air temperature data into six predominant patterns. The hottest heat patterns from the SOM analysis are compared with the 11-summer median conditions using the urban heat island curve (UHIC). The UHIC shows the relationship between air temperature (and dewpoint temperature) and urban land-use fraction. It is found that during these hottest events 1) the air temperature and dewpoint temperature over the study area increase most during nighttime, by at least 4 K relative to the median conditions; 2) the urban–rural temperature/humidity gradient is decreased as a result of larger temperature and humidity increases over the areas with greater vegetation fraction than over those with greater urban fraction; and 3) heat patterns grow more rapidly leading up to the events, followed by a slower return to normal conditions afterward. This research provides an alternate way to investigate the spatiotemporal characteristics of the UHI, using a satellite remote sensing perspective on air temperature and humidity. The technique has potential to be applied to cities globally and provides a climatological perspective on extreme heat that complements the many case studies of individual events.


2013 ◽  
Vol 1 (5) ◽  
pp. 4963-4996
Author(s):  
T. M. Giannaros ◽  
D. Melas ◽  
I. A. Daglis ◽  
I. Keramitsoglou

Abstract. The urban heat island (UHI) effect is one prominent form of localized anthropogenic climate modification. It represents a significant urban climate problem since it occurs in that layer of the atmosphere where almost all daily human activities take place. This paper presents the development of a high-resolution modelling system that could be used for simulating the UHI effect in the context of operational weather forecasting activities. The modelling system is built around a state-of-the-art numerical weather prediction model, properly modified to allow for the better representation of the urban climate. The model performance in terms of simulating the near-surface air temperature and thermal comfort conditions over the complex urban area of Athens, Greece, is evaluated during a 1.5-month operational implementation in the summer of 2010. Results from this case study reveal an overall satisfactory performance of the modelling system. The discussion of the results highlights the important role that, given the necessary modifications, a meteorological model can play as a supporting tool for developing successful heat island mitigation strategies. This is further underlined through the operational character of the presented modelling system.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 67 ◽  
Author(s):  
Ping Jiang ◽  
Xiaoran Liu ◽  
Haonan Zhu ◽  
Yonghua Li

The spatial and temporal features of urban heat island (UHI) intensity in complex urban terrain are barely investigated. This study examines the UHI intensity variations in mountainous Chongqing using a dense surface monitoring network. The results show that the UHI intensity is closely related to underlying surfaces, and the strongest UHI intensity is confined around the central urban areas. The UHI intensity is most prominent at night and in warm season, and the magnitude could reach ~4.5 °C on summer night. Our quantitative analysis shows a profound contribution of urbanization level to UHI intensity both at night and in summer, with regression coefficient b = 4.31 and 6.65, respectively. At night, the urban extra heat such as reflections of longwave radiation by buildings and release of daytime-stored heat from artificial materials, is added into the boundary layer, which compensates part of urban heat loss and thus leads to stronger UHI intensity. In summer, the urban areas are frequently controlled by oppressively hot weather. Due to increased usage of air conditioning, more anthropogenic heat is released. As a result, the urban temperatures are higher at night. The near-surface wind speed can serve as an indicator predicting UHI intensity variations only in the diurnal cycle. The rural cooling rate during early evening transition, however, is an appropriate factor to estimate the magnitude of UHI intensity both at night and in summer.


2018 ◽  
Vol 57 (2) ◽  
pp. 209-220 ◽  
Author(s):  
Shaoxiu Ma ◽  
Andy Pitman ◽  
Jiachuan Yang ◽  
Claire Carouge ◽  
Jason P. Evans ◽  
...  

AbstractGlobal warming, in combination with the urban heat island effect, is increasing the temperature in cities. These changes increase the risk of heat stress for millions of city dwellers. Given the large populations at risk, a variety of mitigation strategies have been proposed to cool cities—including strategies that aim to reduce the ambient air temperature. This paper uses common heat stress metrics to evaluate the performance of several urban heat island mitigation strategies. The authors found that cooling via reducing net radiation or increasing irrigated vegetation in parks or on green roofs did reduce ambient air temperature. However, a lower air temperature did not necessarily lead to less heat stress because both temperature and humidity are important factors in determining human thermal comfort. Specifically, cooling the surface via evaporation through the use of irrigation increased humidity—consequently, the net impact on human comfort of any cooling was negligible. This result suggests that urban cooling strategies must aim to reduce ambient air temperatures without increasing humidity, for example via the deployment of solar panels over roofs or via cool roofs utilizing high albedos, in order to combat human heat stress in the urban environment.


2011 ◽  
Vol 6 (1) ◽  
pp. 27-34 ◽  
Author(s):  
R. Hamdi ◽  
H. Van de Vyver

Abstract. In this letter, the Brussels's urban heat island (UHI) effect on the near-surface air temperature time series of Uccle (the national suburban recording station of the Royal Meteorological Institute of Belgium) was estimated between 1955 and 2006 during the summer months. The UHI of Brussels was estimated using both ground-based weather stations and remote sensing imagery combined with a land surface scheme that includes a state-of-the-art urban parameterization, the Town Energy Balance scheme. Analysis of urban warming based on the remote sensing method reveals that the urban bias on minimum air temperature is rising at a higher rate, 2.5 times (2.85 ground-based observed) more, than on maximum temperature, with a linear trend of 0.15 °C (0.19 °C ground-based observed) and 0.06 °C (0.06 °C ground-based observed) per decade respectively. The summer-mean urban bias on the mean air temperature is 0.8 °C (0.9 °C ground-based observed). The results based on remote sensing imagery are compatible with estimates of urban warming based on weather stations. Therefore, the technique presented in this work is a useful tool in estimating the urban heat island contamination in long time series, countering the drawbacks of an ground-observational approach.


Sign in / Sign up

Export Citation Format

Share Document