scholarly journals Toward Improving Ice Water Content and Snow-Rate Retrievals from Radars. Part II: Results from Three Wavelength Radar–Collocated In Situ Measurements and CloudSat–GPM–TRMM Radar Data

2018 ◽  
Vol 57 (2) ◽  
pp. 365-389 ◽  
Author(s):  
Andrew Heymsfield ◽  
Aaron Bansemer ◽  
Norman B. Wood ◽  
Guosheng Liu ◽  
Simone Tanelli ◽  
...  

AbstractTwo methods for deriving relationships between the equivalent radar reflectivity factor Ze and the snowfall rate S at three radar wavelengths are described. The first method uses collocations of in situ aircraft (microphysical observations) and overflying aircraft (radar observations) from two field programs to develop Ze–S relationships. In the second method, measurements of Ze at the top of the melting layer (ML), from radars on the Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and CloudSat satellites, are related to the retrieved rainfall rate R at the base of the ML, assuming that the mass flux through the ML is constant. Retrievals of R are likely to be more reliable than S because far fewer assumptions are involved in the retrieval and because supporting ground-based validation data are available. The Ze–S relationships developed here for the collocations and the mass-flux technique are compared with those derived from level 2 retrievals from the standard satellite products and with a number of relationships developed and reported by others. It is shown that there are substantial differences among them. The relationships developed here promise improvements in snowfall-rate retrievals from satellite-based radar measurements.

2006 ◽  
Vol 23 (11) ◽  
pp. 1492-1505 ◽  
Author(s):  
Eyal Amitai ◽  
David A. Marks ◽  
David B. Wolff ◽  
David S. Silberstein ◽  
Brad L. Fisher ◽  
...  

Abstract Evaluation of the Tropical Rainfall Measuring Mission (TRMM) satellite observations is conducted through a comprehensive ground validation (GV) program. Since the launch of TRMM in late 1997, standardized instantaneous and monthly rainfall products are routinely generated using quality-controlled ground-based radar data adjusted to the gauge accumulations from four primary sites. As part of the NASA TRMM GV program, effort is being made to evaluate these GV products. This paper describes the product evaluation effort for the Melbourne, Florida, site. This effort allows us to evaluate the radar rainfall estimates, to improve the algorithms in order to develop better GV products for comparison with the satellite products, and to recognize the major limiting factors in evaluating the estimates that reflect current limitations in radar rainfall estimation. Lessons learned and suggested improvements from this 8-yr mission are summarized in the context of improving planning for future precipitation missions, for example, the Global Precipitation Measurement (GPM).


2018 ◽  
Vol 11 (9) ◽  
pp. 5223-5236 ◽  
Author(s):  
Irene Crisologo ◽  
Robert A. Warren ◽  
Kai Mühlbauer ◽  
Maik Heistermann

Abstract. We explore the potential of spaceborne radar (SR) observations from the Ku-band precipitation radars onboard the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites as a reference to quantify the ground radar (GR) reflectivity bias. To this end, the 3-D volume-matching algorithm proposed by Schwaller and Morris (2011) is implemented and applied to 5 years (2012–2016) of observations. We further extend the procedure by a framework to take into account the data quality of each ground radar bin. Through these methods, we are able to assign a quality index to each matching SR–GR volume, and thus compute the GR calibration bias as a quality-weighted average of reflectivity differences in any sample of matching GR–SR volumes. We exemplify the idea of quality-weighted averaging by using the beam blockage fraction as the basis of a quality index. As a result, we can increase the consistency of SR and GR observations, and thus the precision of calibration bias estimates. The remaining scatter between GR and SR reflectivity as well as the variability of bias estimates between overpass events indicate, however, that other error sources are not yet fully addressed. Still, our study provides a framework to introduce any other quality variables that are considered relevant in a specific context. The code that implements our analysis is based on the wradlib open-source software library, and is, together with the data, publicly available to monitor radar calibration or to scrutinize long series of archived radar data back to December 1997, when TRMM became operational.


2021 ◽  
Vol 13 (9) ◽  
pp. 1745
Author(s):  
Jianxin Wang ◽  
Walter A. Petersen ◽  
David B. Wolff

The global precipitation measurement mission (GPM) has been in operation for seven years and continues to provide a vast quantity of global precipitation data at finer temporospatial resolutions with improved accuracy and coverage. GPM’s signature algorithm, the integrated multisatellite retrievals for GPM (IMERG) is a next-generation of precipitation product expected for wide variety of research and operational applications. This study evaluates the latest version (V06B) of IMERG and its predecessor, the tropical rainfall measuring mission (TRMM) multisatellite precipitation (TMPA) 3B42 (V7) using ground-based and gauge-corrected multiradar multisensor system (MRMS) precipitation products over the conterminous United States (CONUS). The spatial distributions of all products are analyzed. The error characteristics are further examined for 3B42 and IMERG in winter and summer by an error decomposition approach, which partitions total bias into hit bias, biases due to missed precipitation and false precipitation. The volumetric and categorical statistical metrics are used to quantitatively evaluate the performance of the two satellite-based products. All products show a similar precipitation climatology with some regional differences. The two satellite-based products perform better in the eastern CONUS than in the mountainous Western CONUS. The evaluation demonstrates the clear improvement in IMERG precipitation product in comparison with its predecessor 3B42, especially in reducing missed precipitation in winter and summer, and hit bias in winter, resulting in better performance in capturing lighter and heavier precipitation.


2019 ◽  
Vol 11 (6) ◽  
pp. 697 ◽  
Author(s):  
Fenglin Xu ◽  
Bin Guo ◽  
Bei Ye ◽  
Qia Ye ◽  
Huining Chen ◽  
...  

Accurate estimation of high-resolution satellite precipitation products like Global Precipitation Measurement (GPM) and Tropical Rainfall Measuring Mission (TRMM) is critical for hydrological and meteorological research, providing a benchmark for the continued development and future improvement of these products. This study aims to comprehensively evaluate the Integrated Multi-Satellite Retrievals for GPM (IMERG) and TRMM 3B42V7 products at multiple temporal scales from 1 January 2015 to 31 December 2017 over the Huang-Huai-Hai Plain in China, using daily precipitation data from 59 meteorological stations. Three commonly used statistical metrics (CC, RB, and RMSE) are adopted to quantitatively verify the accuracy of two satellite precipitation products. The assessment also takes into account the precipitation detection capability (POD, FAR, CSI, and ACC) and frequency of different precipitation intensities. The results show that the IMERG and 3B42V7 present strong correlation with meteorological stations observations at annual and monthly scales (CC > 0.90), whereas moderate at the daily scale (CC = 0.76 and 0.69 for IMERG and 3B42V7, respectively). The spatial variability of the annual and seasonal precipitation is well captured by these two satellite products. And spatial patterns of precipitation gradually decrease from south to north over the Huang-Huai-Hai Plain. Both IMERG and 3B42V7 products overestimate precipitation compared with the station observations, of which 3B42V7 has a lower degree of overestimation. Relative to the IMERG, annual precipitation estimates from 3B42V7 show lower RMSE (118.96 mm and 142.67 mm, respectively), but opposite at the daily, monthly, and seasonal scales. IMERG has a better precipitation detection capability than 3B42V7 (POD = 0.83 and 0.67, respectively), especially when detecting trace and solid precipitation. The two precipitation products tend to overestimate moderate (2–10 mm/d) and heavy (10–50 mm/d) precipitation events, but underestimate violent (>50 mm/d) precipitation events. The IMERG is not found capable to detecting precipitation events of different frequencies more precisely. In general, the accuracy of IMERG is better than 3B42V7 product in the Huang-Huai-Hai Plain. The IMERG satellite precipitation product with higher temporal and spatial resolutions can be regarded a reliable data sources in studying hydrological and climatic research.


2019 ◽  
Vol 11 (19) ◽  
pp. 2314 ◽  
Author(s):  
Anjum ◽  
Ahmad ◽  
Ding ◽  
Shangguan ◽  
Zaman ◽  
...  

This study presents an assessment of the version-6 (V06) of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) product from June 2014 to December 2017 over different hydro-climatic regimes in the Tianshan Mountains. The performance of IMERG-V06 was compared with IMERG-V05 and the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 precipitation products. The precipitation products were assessed against gauge-based daily and monthly precipitation observations over the entire spatial domain and five hydro-climatologically distinct sub-regions. Results showed that: (1) The spatiotemporal variability of average daily precipitation over the study domain was well represented by all products. (2) All products showed better correlations with the monthly gauge-based observations than the daily data. Compared to 3B42V7, both IMERG products presented a better agreement with gauge-based observations. (3) The estimation skills of all precipitation products showed significant spatial variations. Overall performance of all precipitation products was better in the Eastern region compared to the Middle and Western regions. (4) Satellite products were able to detect tiny precipitation events, but they were uncertain in capturing light and moderate precipitation events. (5) No significant improvements in the precipitation estimation skill of IMERG-V06 were found as compared to IMERG-V05. We deduce that the IMERG-V06 precipitation detection capability could not outperform the efficiency of IMERG-V05. This comparative evaluation of the research products of Global Precipitation Measurement (GPM) and TRMM products in the Tianshan Mountains is useful for data users and algorithm developers.


2020 ◽  
Author(s):  
Kenji Suzuki ◽  
Rimpei Kamamoto ◽  
Tetsuya Kawano ◽  
Katsuhiro Nakagawa ◽  
Yuki Kaneko

<p>Two products from the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) algorithms, a flag of intense solid precipitation above the –10°C height (“flagHeavyIcePrecip”), and a classification of precipitation type (“typePrecip”) were validated quantitatively from the viewpoint of microphysics using ground-based in-situ hydrometeor measurements and X-band multi-parameter (X-MP) radar observations of snow clouds that occurred on 4 February 2018. The distribution of the “flagHeavyIcePrecip” footprints was in good agreement with that of the graupel-dominant pixels classified by the X-MP radar hydrometeor classification. In addition, the vertical profiles of X-MP radar reflectivity exhibited significant differences between footprints flagged and unflagged by “flagHeavyPrecip”. We confirmed the effectiveness of “flagHeavyIcePrecip”, which is built into “typePrecip” algorithm, for detecting intense ice precipitation and concluded that "flagHeavyIcePrecip" is appropriate to useful for determining convective clouds.</p><p>It is well known that the lightning activity is closely related to the convection. We examined the lightning activity using GPM DPR product flagHeavyIcePrecip that indicates the existence of graupel in the upper cloud. On 20 June 2016, we experienced heavy rain with active lightning during Baiu monsoon rainy season, while the GPM DPR passed over Kyushu region in Japan. The distribution of “flagHeavyIcePrecip” obtained from the GPM DPR well corresponded to the CG/IC lightning concentration. On 4 September 2019, isolated thunder clouds observed by the GPM DPR was also similar to the “flagHeavyIcePrecip” distribution. However, partially there was IC lightning without “flagHeavyIcePrecip”, which was positive lightning. It was suggested to have been produced in the upper clouds in which positive ice crystals were dominant.</p>


2020 ◽  
Author(s):  
Linda Bogerd ◽  
Hidde Leijnse ◽  
Aart Overeem ◽  
Remko Uijlenhoet

<p><span><span>Satellite-based remote sensing provides a unique opportunity for the estimation of global precipitation patterns. </span><span>In order to use this approach, it is crucial that the uncertainty in the satellite estimations is precisely understood. T</span><span>he retrieval</span><span> of high-latitude precipitation </span><span>(especially shallow precipitation) </span><span>remains challenging for satellite precipitation monitoring. </span><span>This </span><span>project</span><span> will quantify the quality of the precipitation estimations obtained from</span> <span>the Global Precipitation Measurement (GPM) mission, where the focus will be on the level II and III products.</span> <span>Initially, t</span><span>h</span><span>e </span><span>Netherlands </span><span>is chosen as research area, since it has an excellent infrastructure with both in-situ and remotely sensed ground-based precipitation measurements, </span><span>its flat topography,</span> <span>and the </span><span>frequent</span> <span>occurrence</span><span> of shallow precipitation events. The project will study the influence of precipitation type and the impact of the seasons on the accuracy </span><span>of the GPM products. </span><span>Hereafter, the project will focus on the physical causes behind the discrepancies between the GPM products and the ground validation</span><span>, </span><span>w</span><span>hich can be used to improve the </span><span>retrieval</span><span> algorithms. The </span><span>presentation</span><span> will outline the project structure and will demonstrate </span><span>the</span> <span>initial</span><span> results. </span></span></p>


2012 ◽  
Vol 13 (1) ◽  
pp. 351-365 ◽  
Author(s):  
Ali Tokay ◽  
Kurtuluş

Small-scale variability of rainfall has been studied employing six dual rain gauge sites at Wallops Island, Virginia. The rain gauge sites were separated between 0.4 and 5 km, matching the beamwidth of Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) precipitation radars. During a 2-yr observational period, over 7100 rainy samples were received at 5-min integration. A single gauge did not report as high as 67% of the time when at least one of the other gauges had rainfall in one of the seasons. Since rainfall from one of the six rain gauges is sufficient for the rainy footprint from a satellite, this demonstrates the common occurrence of the partial beamfilling. For the periods where all gauges were reporting rainfall, a single gauge had at most 13% difference from the areal average rainfall in one of the seasons. This suggests that at the spatial scale of 5 km, the variability caused by the rain gradient is relatively less important than the variability arising from a partially filled footprint. During the passage of frontal systems and tropical cyclones, the beam was filled by rain most of the time and this resulted in relatively higher correlation distances. The correlation distance had a sharp drop off from 45 km in moderately variable rainfall to 3 km in highly variable rainfall and ranged from 5 to 35 km between the different seasons. This demonstrates its highly variable nature. Considering temporal sampling, the monthly rainfall error was 35% and 73% for 3-hourly and twice-daily observations, respectively.


Sign in / Sign up

Export Citation Format

Share Document