Bias Correction of Gauge Data and its Effect on Precipitation Climatology over Mainland China

2019 ◽  
Vol 58 (10) ◽  
pp. 2177-2196 ◽  
Author(s):  
Yingxian Zhang ◽  
Yuyu Ren ◽  
Guoyu Ren ◽  
Guofu Wang

AbstractTypical rain gauge measurements have long been recognized to underestimate actual precipitation. Long-term daily precipitation records during 1961–2013 from a dense national network of 2379 gauges were corrected to remove systematic errors caused by trace precipitation, wetting losses, and wind-induced undercatch. The corrected percentage was higher in cold seasons and lower in warm seasons. Both trace precipitation and wetting loss corrections were more important in arid regions than in wet regions. A greater correction percentage for wind-induced error could be found in cold and arid regions, as well as high wind speed areas. Generally, the annual precipitation amounts as well as the annual precipitation intensity increased to varying degrees after bias correction with the maximum percentage being about 35%. More importantly, the bias-corrected snowfall amount as well as the rainstorm amount increased remarkably by percentages of more than 50% and 18%, respectively. Remarkably, the total number of actual rainstorm events during the past 53 years could be 90 days more than the observed rainstorm events in some coastal areas of China. Therefore, the actual amounts of precipitation, snowfall, and intense rainfall were much higher than previously measured over China. Bias correction is thus needed to obtain accurate estimates of precipitation amounts and precipitation intensity.

2017 ◽  
Vol 49 (1) ◽  
pp. 237-250 ◽  
Author(s):  
Luminda Niroshana Gunawardhana ◽  
Ghazi A. Al-Rawas ◽  
Andy Y. Kwarteng ◽  
Malik Al-Wardy ◽  
Yassine Charabi

Abstract The changes in the number of wet days (NWD) in Oman projected by climate models was analyzed, focusing mostly on variation of precipitation intensity and its effect on total annual precipitation (PTOT) in the future. The daily precipitation records of 49 gage stations were divided into five regions. Of the five general circulation models studied, two of them were selected based on their performance to simulate local-scale precipitation characteristics. All regions studied, except the interior desert region of the country, could experience fewer wet days in the future, with the most significant decreases estimated in southern Oman. The contribution from the cold frontal troughs to the PTOT in the northeast coastal region would decrease from 85% in the 1985–2004 period to 79% during the 2040–2059 period and further decrease to 77% during the 2080–2099 period. In contrast, results depict enhanced tropical cyclone activities in the northeast coastal region during the post-monsoon period. Despite the decreases in the NWD, PTOT in all regions would increase by 6–29% and 35–67% during the 2040–2059 and 2080–2099 periods, respectively. These results, therefore, show that increases in precipitation intensity dominate the changes in PTOT.


2016 ◽  
Author(s):  
S. S. Peng ◽  
S. L. Piao ◽  
P. Bousquet ◽  
P. Ciais ◽  
B. G. Li ◽  
...  

Abstract. Methane (CH4) has a 28-fold greater global warming potential than CO2 over one hundred years. Atmospheric CH4 concentration has tripled since 1750. Anthropogenic CH4 emissions from China has been growing rapidly in the past decades, and contributes more than 10 % of global anthropogenic CH4 emissions with large uncertainties in existing global inventories, generally limited to country-scale statistics. To date, a long-term CH4 emissions inventory including the major sources sectors and based on province-level emission factors is still lacking. In this study, we produced a detailed bottom-up inventory of anthropogenic CH4 emissions from the eight major source sectors in China for the period 1980–2010. In the past three decades, the total CH4 emissions increased from 22.2 [16.6–28.2] Tg CH4 yr−1 (mean [minimum-maximum of 95 % confidence interval]) to 45.0 [36.4–58.3] Tg CH4 yr−1, and most of this increase took place in the 2000s. This fast increase of the total CH4 emissions after 2000 is mainly driven by CH4 emissions from coal exploitation. The largest contribution to total CH4 emissions also shifted from rice cultivation in 1980 to coal exploitation in 2010. The total emissions inferred in this work compare well with the EPA inventory but appear to be 38 % lower than EDGAR4.2 inventory. The uncertainty of our inventory is investigated using emissions factors collected from published literatures. We also distributed province-scale emissions into 0.5º × 0.5º maps using social-economic activity data. This new inventory could help understanding CH4 budgets at regional scale and guiding CH4 mitigation policies in China.


2007 ◽  
Vol 20 (9) ◽  
pp. 1734-1750 ◽  
Author(s):  
David J. Gochis ◽  
Christopher J. Watts ◽  
Jaime Garatuza-Payan ◽  
Julio Cesar-Rodriguez

Abstract Detailed information on the spatial and temporal characteristics of precipitation intensity from the mountainous region of northwest Mexico has, until recently, been lacking. As part of the 2004 North American Monsoon Experiment (NAME) enhanced observing period (EOP) surface rain gauge networks along with weather radar and orbiting satellites were employed to observe precipitation in a manner heretofore unprecedented for this semiarid region. The NAME Event Rain gauge Network (NERN), which has been in operation since 2002, contributed to this effort. Building on previous work, this paper presents analyses on the spatial and temporal characteristics of precipitation intensity as observed by NERN gauges. Analyses from the 2004 EOP are compared with the 2002–04 period and with long-term gauge observations. It was found that total precipitation from July to August of 2004 was similar in spatial extent and magnitude to the long-term average, though substantially wetter than 2003. Statistical analyses of precipitation intensity data from the NERN reveal that large precipitation events at hourly and daily time scales are restricted to coastal and low-elevation areas west of the Sierra Madre Occidental. At 10-min time scales, maximum intensity values equal to those at low elevations could be observed at higher elevations though they were comparatively infrequent. It is also shown that the inclusion of NERN observations in existing operational analyses helps to correct significant biases, which, on the seasonal time scale, are of similar magnitude as the interannual variability in precipitation in key headwater regions of northwest Mexico.


2020 ◽  
Vol 21 (5) ◽  
pp. 881-890 ◽  
Author(s):  
Hong Wang ◽  
Fubao Sun

AbstractStationarity is an assumption that permeates training and practice in water-resource engineering. However, with global change, the validity of stationarity as well as uncertainty of nonstationarity in water-resource planning are being questioned; thus, it is critical to evaluate the stationarity of climate variables, especially precipitation. Based on the continuous observation data of precipitation from 1427 stations across China, 593 efficient grid cells (1° × 1°) are constructed, and the annual precipitation stationarities from 1959 to 2018 are analyzed. The evaluated autocorrelation stationarity indicates that 92.24%–96.12% of the grid cells for an autocorrelation coefficient of lag 1–8 years of precipitation are indistinguishable from 0 [90% confidence level (CL)]. The mean stationarity indicates that 97.47% of the grid cells have a stable mean for 30 years (90% CL); beyond the confidence limits, they are mainly located in the northwest of China, where annual precipitation is less, and the average exceeding range is ±3.78 mm. The long-term observation of annual precipitation in Beijing (1819–2018) and Shanghai (1879–2018) also yields autocorrelation and mean stationarities. There is no significant difference in the annual precipitations between the past 20 years (1999–2018) and the past 60 years (1959–2018) over China. Therefore, the annual precipitation in China exhibits a weak stationary behavior that is indistinguishable from the stationary stochastic process. The average variation in precipitation is ±9.55% between 30 successive years and 16.53% between 10 successive years. Therefore, it is valuable and feasible to utilize the historical data of annual precipitation as the basis of water-resources application.


2016 ◽  
Vol 16 (22) ◽  
pp. 14545-14562 ◽  
Author(s):  
Shushi Peng ◽  
Shilong Piao ◽  
Philippe Bousquet ◽  
Philippe Ciais ◽  
Bengang Li ◽  
...  

Abstract. Methane (CH4) has a 28-fold greater global warming potential than CO2 over 100 years. Atmospheric CH4 concentration has tripled since 1750. Anthropogenic CH4 emissions from China have been growing rapidly in the past decades and contribute more than 10 % of global anthropogenic CH4 emissions with large uncertainties in existing global inventories, generally limited to country-scale statistics. To date, a long-term CH4 emission inventory including the major sources sectors and based on province-level emission factors is still lacking. In this study, we produced a detailed annual bottom-up inventory of anthropogenic CH4 emissions from the eight major source sectors in China for the period 1980–2010. In the past 3 decades, the total CH4 emissions increased from 24.4 [18.6–30.5] Tg CH4 yr−1 in 1980 (mean [minimum–maximum of 95 % confidence interval]) to 44.9 [36.6–56.4] Tg CH4 yr−1 in 2010. Most of this increase took place in the 2000s decade with averaged yearly emissions of 38.5 [30.6–48.3] Tg CH4 yr−1. This fast increase of the total CH4 emissions after 2000 is mainly driven by CH4 emissions from coal exploitation. The largest contribution to total CH4 emissions also shifted from rice cultivation in 1980 to coal exploitation in 2010. The total emissions inferred in this work compare well with the EPA inventory but appear to be 36 and 18 % lower than the EDGAR4.2 inventory and the estimates using the same method but IPCC default emission factors, respectively. The uncertainty of our inventory is investigated using emission factors collected from state-of-the-art published literatures. We also distributed province-scale emissions into 0.1°  ×  0.1° maps using socioeconomic activity data. This new inventory could help understanding CH4 budgets at regional scale and guiding CH4 mitigation policies in China.


1988 ◽  
Vol 29 (3) ◽  
pp. 255-262 ◽  
Author(s):  
K. Gajewski

Well-dated pollen profiles from six sites from Maine to Minnesota record vegetation changes indicative of summer temperature and annual precipitation variations over the past 2000 yr. Laminations in the sediment provide accurate time control. Multiple regression techniques were used to calculate calibration functions from a spatial network of modern pollen and climate data. When applied to the six pollen diagrams, these calibration functions yielded estimates that show a long-term trend toward lower summer temperature. Superimposed on this long-term trend are short-term fluctuations that are frequently in phase at the sites. Departures from the long-term cooling trend are positive around 1500 yr ago (indicating relative warmth) and negative between 200 and 500 yr ago (indicating relative cold). Annual precipitation showed a slight increase at several sites during the past 1000 yr relative to the previous 1000 yr.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1013
Author(s):  
Taha Al Hosari ◽  
Abdulla Al Mandous ◽  
Youssef Wehbe ◽  
Abdeltawab Shalaby ◽  
Noor Al Shamsi ◽  
...  

Operational cloud seeding programs have been increasingly deployed in several countries to augment natural rainfall amounts, particularly over water-scarce and arid regions. However, evaluating operational programs by quantifying seeding impacts remains a challenging task subject to complex uncertainties. In this study, we investigate seeding impacts using both long-term rain gauge records and event-based weather radar retrievals within the framework of the United Arab Emirates (UAE) National Center of Meteorology’s operational cloud seeding program. First, seasonal rain gauge records are inter-compared between unseeded (1981–2002) and seeded (2003–2019) periods, after which a posteriori target/control regression is developed to decouple natural and seeded rainfall time series. Next, trend analyses and change point detection are carried out over the July-October seeding periods using the modified Mann-Kendall (mMK) test and the Cumulative Sum (CUSUM) method, respectively. Results indicate an average increase of 23% in annual surface rainfall over the seeded target area, along with statistically significant change points detected during 2011 with decreasing/increasing rainfall trends for pre-/post-change point periods, respectively. Alternatively, rain gauge records over the control (non-seeded) area show non-significant change points. In line with the gauge-based statistical findings, a physical analysis using an archive of seeded (65) and unseeded (87) storms shows enhancements in radar-based storm properties within 15–25 min of seeding. The largest increases are recorded in storm volume (159%), area cover (72%), and lifetime (65%). The work provides new insights for assessing long-term seeding impacts and has significant implications for policy- and decision-making related to cloud seeding research and operational programs in arid regions.


2014 ◽  
Vol 15 (5) ◽  
pp. 2012-2029 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Dara Entekhabi ◽  
Dennis B. McLaughlin

Abstract The record of global precipitation mapping using Special Sensor Microwave Imager (SSM/I) measurements now extends over two decades. Similar measurements, albeit with different retrieval algorithms, are to be used in the Global Precipitation Measurement (GPM) mission as part of a constellation to map global precipitation with a more frequent data refresh rate. Remotely sensed precipitation retrievals are prone to both magnitude (precipitation intensity) and phase (position) errors. In this study, the ground-based radar precipitation product from the Next Generation Weather Radar stage-IV (NEXRAD-IV) product is used to evaluate a new metric of error in the long-term SSM/I-based precipitation records. The new metric quantifies the proximity of two multidimensional datasets. Evaluation of the metric across the years shows marked seasonality and precipitation intensity dependence. Drifts and changes in the instrument suite are also evident. Additionally, the precipitation retrieval errors conditional on an estimate of background surface soil moisture are estimated. The dynamic soil moisture can produce temporal variability in surface emissivity, which is a source of error in retrievals. Proper filtering has been applied in the analysis to differentiate between the detection error and the retrieval error. The identification of the different types of errors and their dependence on season, intensity, instrument, and surface conditions provide guidance to the development of improved retrieval algorithms for use in GPM constellation-based precipitation data products.


2020 ◽  
Author(s):  
Richard Clark-Wilson ◽  
Simon Armitage ◽  
Ian Candy

<p>Orbitally-driven humid phases in arid regions such as the Arabian and Saharan Deserts have played an important biogeographic role in ancient human dispersals, range expansions/contractions and population structure. The timing and regional climatic pattern of humid phases has been shown by multiple long-term continuous palaeoenvironmental records from both marine and terrestrial (speleothems and long palaeolake cores) archives. These attest to episodic humid phases across this region in line with peak interglacial periods over the Pleistocene. However, these records lack detailed information at the scale at which humans interact with the environment, meaning these interactions are poorly understood. To address this, we apply multi-proxy palaeoenvironmental analysis to interdunal carbonate/siliceous sediment beds that formed during episodic humid phases over the past c. 500,000 years in the western Nefud Desert, Saudi Arabia. While such deposits are short relative to many marine, speleothem and palaeolake records, they provide “snapshots” of the palaeoenvironmental conditions experienced by ancient humans. Importantly, these deposits are often directly associated with Lower and Middle Palaeolithic archaeology, demonstrating they were an important locus for ancient human activity during humid phases.</p><p>Our analysis demonstrates that humid intervals related to MIS 11, 9, 5e and 5a follow a simple environmental pattern where relatively stable interdunal lake bodies existed through a single humid phase. In contrast, MIS 7 is climatically complex as the sediment record demonstrates a dynamic hydrological system fluctuating between lacustrine and palustrine conditions within a single humid interval. Where available, diatom or invertebrate palaeoecology data consistently indicate predominantly fresh waters across multiple humid intervals, and this is supported by a lack of evaporitic minerals (i.e. gypsum and halite) through all sequences. We therefore argue that the western Nefud Desert has repeatedly provided vital freshwater resources for ancient humans and other fauna over the past c. 500,000 years.</p>


Author(s):  
Robert Klinck ◽  
Ben Bradshaw ◽  
Ruby Sandy ◽  
Silas Nabinacaboo ◽  
Mannie Mameanskum ◽  
...  

The Naskapi Nation of Kawawachikamach is an Aboriginal community located in northern Quebec near the Labrador Border. Given the region’s rich iron deposits, the Naskapi Nation has considerable experience with major mineral development, first in the 1950s to the 1980s, and again in the past decade as companies implement plans for further extraction. This has raised concerns regarding a range of environmental and socio-economic impacts that may be caused by renewed development. These concerns have led to an interest among the Naskapi to develop a means to track community well-being over time using indicators of their own design. Exemplifying community-engaged research, this paper describes the beginning development of such a tool in fall 2012—the creation of a baseline of community well-being against which mining-induced change can be identified. Its development owes much to the remarkable and sustained contribution of many key members of the Naskapi Nation. If on-going surveying is completed based on the chosen indicators, the Nation will be better positioned to recognize shifts in its well-being and to communicate these shifts to its partners. In addition, long-term monitoring will allow the Naskapi Nation to contribute to more universal understanding of the impacts of mining for Indigenous peoples.


Sign in / Sign up

Export Citation Format

Share Document