scholarly journals Assessment of Planetary Boundary Layer Parameterizations and Urban Heat Island Comparison: Impacts and Implications for Tracer Transport

2020 ◽  
Vol 59 (10) ◽  
pp. 1637-1653
Author(s):  
Israel Lopez-Coto ◽  
Micheal Hicks ◽  
Anna Karion ◽  
Ricardo K. Sakai ◽  
Belay Demoz ◽  
...  

AbstractAccurate simulation of planetary boundary layer height (PBLH) is key to greenhouse gas emission estimation, air quality prediction, and weather forecasting. This paper describes an extensive performance assessment of several Weather Research and Forecasting (WRF) Model configurations in which novel observations from ceilometers, surface stations, and a flux tower were used to study their ability to reproduce the PBLH and the impact that the urban heat island (UHI) has on the modeled PBLHs in the greater Washington, D.C., area. In addition, CO2 measurements at two urban towers were compared with tracer transport simulations. The ensemble of models used four PBL parameterizations, two sources of initial and boundary conditions, and one configuration including the building energy parameterization urban canopy model. Results have shown low biases over the whole domain and period for wind speed, wind direction, and temperature, with no drastic differences between meteorological drivers. We find that PBLH errors are mostly positively correlated with sensible heat flux errors and that modeled positive UHI intensities are associated with deeper modeled PBLs over the urban areas. In addition, we find that modeled PBLHs are typically biased low during nighttime for most of the configurations with the exception of those using the MYNN parameterization, and these biases directly translate to tracer biases. Overall, the configurations using the MYNN scheme performed the best, reproducing the PBLH and CO2 molar fractions reasonably well during all hours and thus opening the door to future nighttime inverse modeling.

2020 ◽  
Author(s):  
Wenchao Han ◽  
Zhanqing Li ◽  
Fang Wu ◽  
Yuwei Zhang ◽  
Jianping Guo ◽  
...  

Abstract. The urban heat island intensity (UHII) is the temperature difference between urban areas and their rural surroundings. It is commonly attributed to changes in the underlying surface structure caused by urbanization. Air pollution caused by aerosol particles can affect the UHII by changing the surface energy balance and atmospheric thermodynamic structure. By analyzing satellite data and ground-based observations collected from 2001 to 2010 at 35 cities in China and using the WRF-Chem model, we found that aerosols have very different effects on daytime UHII in different seasons: reducing the UHII in summer, but increasing the UHII in winter. The seasonal contrast in the spatial distribution of aerosols between the urban centers and the suburbs lead to a spatial discrepancy in aerosol radiative effect (SD-ARE). Additionally, different stability of the planetary boundary layer induced by aerosol is closely associated with a dynamic effect (DE) on the UHII. SD-ARE reduces the amount of radiation reaching the ground and changes the vertical temperature gradient, whereas DE increases the stability of the planetary boundary layer and weakens heat release and exchange between the surface and the PBL. Both effects exist under polluted conditions, but their relative roles are opposite between the two seasons. It is the joint effects of the SD-ARE and the DE that drive the UHII to behave differently in different seasons, which is confirmed by model simulations. In summer, the UHII is mainly affected by the SD-ARE, and the DE is weak, and the opposite is the case in winter. This finding sheds a new light on the impact of the interaction between urbanization-induced surface changes and air pollution on urban climate.


Author(s):  
Alberto Previati ◽  
Giovanni B. Crosta

AbstractUrban areas are major contributors to the alteration of the local atmospheric and groundwater environment. The impact of such changes on the groundwater thermal regime is documented worldwide by elevated groundwater temperature in city centers with respect to the surrounding rural areas. This study investigates the subsurface urban heat island (SUHI) in the aquifers beneath the Milan city area in northern Italy, and assesses the natural and anthropogenic controls on groundwater temperatures within the urban area by analyzing groundwater head and temperature records acquired in the 2016–2020 period. This analysis demonstrates the occurrence of a SUHI with up to 3 °C intensity and reveals a correlation between the density of building/subsurface infrastructures and the mean annual groundwater temperature. Vertical heat fluxes to the aquifer are strongly related to the depth of the groundwater and the density of surface structures and infrastructures. The heat accumulation in the subsurface is reflected by a constant groundwater warming trend between +0.1 and + 0.4 °C/year that leads to a gain of 25 MJ/m2 of thermal energy per year in the shallow aquifer inside the SUHI area. Future monitoring of groundwater temperatures, combined with numerical modeling of coupled groundwater flow and heat transport, will be essential to reveal what this trend is controlled by and to make predictions on the lateral and vertical extent of the groundwater SUHI in the study area.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Qian Sun ◽  
Grace Yun ◽  
Ting Ling

<p><strong>Abstract.</strong> The impact of heat on health can be more significant in urban areas with more population and where the microclimate is often unintentionally modified to create the Urban Heat Island (UHI) effect. Extreme heat and UHI pose a risk to the health of vulnerable individuals, such as the elderly, the very young, and those need care. Vulnerability has become a central concept in climate change research and policy. To assess it, many studies have used equal weighted cumulative indices to aggregate multiple factors into a composite HVI (Heat Vulnerability Index) and analyse the differences and intensity across local areas and regions. However, the aggregation and equal weighting rationality, and the disregard of spatial correlation can result in inaccurate explanation on local vulnerabilities.</p><p>This study develops an enhanced index of population heat vulnerability (HVI) in Perth metropolitan area, Western Australia (WA), using environmental, demographic, and health-related risk factors for heat exposure, sensitivity and adaptive capability. Satellite derived urban heat island data and community profiles were integrated by a spatial risk assessment methodology to highlight potential heat health risk areas and build the foundations for mitigation and adaptation plans. Principal component analysis (PCA) was used to identify the key risk factors for heat vulnerability. Geographically weighted regression (GWR) were used to model the spatial relationships between temperature and other contributing factors to produce weights for calculating HVI. The index was finally mapped to produce a spatial representation of risk. The maps of spatial heat health vulnerability provide information to target heat-related health risks by aiding policy advisors, healthcare professionals, and ancillary services to develop heatwave preparedness plans at a local scale.</p>


2013 ◽  
Vol 52 (9) ◽  
pp. 2051-2064 ◽  
Author(s):  
Dan Li ◽  
Elie Bou-Zeid

AbstractCities are well known to be hotter than the rural areas that surround them; this phenomenon is called the urban heat island. Heat waves are excessively hot periods during which the air temperatures of both urban and rural areas increase significantly. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses indicates synergies between urban heat islands and heat waves. That is, not only do heat waves increase the ambient temperatures, but they also intensify the difference between urban and rural temperatures. As a result, the added heat stress in cities will be even higher than the sum of the background urban heat island effect and the heat wave effect. Results presented here also attribute this added impact of heat waves on urban areas to the lack of surface moisture in urban areas and the low wind speed associated with heat waves. Given that heat waves are projected to become more frequent and that urban populations are substantially increasing, these findings underline the serious heat-related health risks facing urban residents in the twenty-first century. Adaptation and mitigation strategies will require joint efforts to reinvent the city, allowing for more green spaces and lesser disruption of the natural water cycle.


2013 ◽  
Vol 13 (17) ◽  
pp. 8525-8541 ◽  
Author(s):  
H. Wouters ◽  
K. De Ridder ◽  
M. Demuzere ◽  
D. Lauwaet ◽  
N. P. M. van Lipzig

Abstract. The urban heat island (UHI) over Paris during summer 2006 was simulated using the Advanced Regional Prediction System (ARPS) updated with a simple urban parametrization at a horizontal resolution of 1 km. Two integrations were performed, one with the urban land cover of Paris and another in which Paris was replaced by cropland. The focus is on a five-day clear-sky period, for which the UHI intensity reaches its maximum. The diurnal evolution of the UHI intensity was found to be adequately simulated for this five day period. The maximum difference at night in 2 m temperature between urban and rural areas stemming from the urban heating is reproduced with a relative error of less than 10%. The UHI has an ellipsoidal shape and stretches along the prevailing wind direction. The maximum UHI intensity of 6.1 K occurs at 23:00 UTC located 6 km downstream of the city centre and this largely remains during the whole night. An idealized one-column model study demonstrates that the nocturnal differential sensible heat flux, even though much smaller than its daytime value, is mainly responsible for the maximum UHI intensity. The reason for this nighttime maximum is that additional heat is only affecting a shallow layer of 150 m. An air uplift is explained by the synoptic east wind and a ramp upwind of the city centre, which leads to a considerable nocturnal adiabatic cooling over cropland. The idealized study demonstrates that the reduced vertical adiabatic cooling over the city compared to cropland induces an additional UHI build-up of 25%. The UHI and its vertical extent is affected by the boundary-layer stability, nocturnal low-level jet as well as radiative cooling. Therefore, improvements of representing these boundary-layer features in atmospheric models are important for UHI studies.


Author(s):  
Van Tran Thi ◽  
Bao Ha Duong Xuan ◽  
Mai Nguyen Thi Tuyet

In urban area, one of the great problem is the rise of temperature, which leads to form the urban heat island effect. This paper refers to the trend of the urban surface temperature extracted from the Landsat images from which to consider changes in the formation of surface urban heat island for the north of Ho Chi Minh city in period 1995-2015. Research has identified land surface temperature from thermal infrared band, according to the ability of the surface emission based on characteristics of normalized difference vegetation index NDVI. The results showed that temperature fluctuated over the city with a growing trend and the gradual expansion of the area of the high-temperature zone towards the suburbs. Within 20 years, the trend of the formation of surface urban heat island with two typical locations showed a clear difference between the surface temperature of urban areas and rural areas with space expansion of heat island in 4 times in 2015 compared to 1995. An extreme heat island located in the inner city has an area of approximately 18% compared to the total area of the region. Since then, the solution to reduce the impact of urban heat island has been proposed, in order to protect the urban environment and the lives of residents in Ho Chi Minh City becoming better


Author(s):  
Safdar Ali Shirazi ◽  
Khadija Shakrullah ◽  
Saadia Sultan Wahla ◽  
Mareena Khurshid

The aim of present study is to evaluate and assess the impact of built-up areas on development of the urbanheat island (UHI).The study mainly focused on Lahore, which is one of the mega cities of Pakistan. In terms ofpopulation size, Lahore is the second largest city of Pakistan with 11.13 million inhabitants. The geospatial techniques(Remote Sensing and Geographical Information System) along with statistical applications were applied to find out theLand Cover Land Uses changes and consequent development of builtup areas over the period of 2000 and 2015. Tostudy the UHI, the meteorological data of each 30 minutes for 36 days starting from 30th June 2015 to 4th August 2015were collected through direct on site observation by using digital weather station. The results of UHI were crosschecked by obtaining land surface temperature by using thermal infrared (TIR) band 6 of the Landsat-7 TM. The resultsshow that the LCLU and built environment have direct impact on development of UHI. The areas where there wasmore vegetation cover had less temperature while in urban areas, the temperature was measured higher. Over the periodof 36 days, the average UHI remained 5.5°C and the highest intensity of UHI was observed as 8.3°C thus augmentedresearch rationale. The study suggests establishment of a thick network of automatic weather stations in Lahore togauge the urban heat island intensity and to plant indigenous trees on vacant swaths and develop urban forest tomitigate city’s rising temperature.


Earth ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 86-110
Author(s):  
Manisha Maharjan ◽  
Anil Aryal ◽  
Bijay Man Shakya ◽  
Rocky Talchabhadel ◽  
Bhesh Raj Thapa ◽  
...  

Rapid Urbanization, and other anthropogenic activities, have amplified the change in land-use transition from green space to heat emission in built-up areas globally. As a result, there has been an increase in the land surface temperature (LST) causing the Urban Heat Island (UHI) effect, particularly in large cities. The UHI effect poses a serious risk to human health and well-being, magnified in large developing cities with limited resources to cope with such issues. This study focuses on understanding the UHI effect in Kathmandu Valley (KV), Delhi, and Dhaka, three growing cities in South Asia. The UHI effect was evaluated by analyzing the UHI intensity of the city with respect to the surroundings. We found that the central urban area, of all three cities, experienced more heat zones compared to the peri-urban areas. The estimated average surface temperature ranged from 21.1 ∘C in March 2014 to 32.0 ∘C in June 2015 in KV, while Delhi and Dhaka experienced surface temperature variation from 29.7 ∘C in June 2017 to 40.2 ∘C in June 2019 and 23.6 ∘C in March 2017 to 33.2 ∘C in March 2014, respectively. Based on magnitude and variation of LST, highly built-up central KV showed heat island characteristics. In both Delhi and Dhaka, the western regions showed the UHI effect. Overall, this study finds that the UHI zones are more concentrated near the urban business centers with high population density. The results suggest that most areas in these cities have a rising LST trend and are on the verge of being UHI regions. Therefore, it is essential that further detailed assessment is conducted to understand and abate the impact of the temperature variations.


Sign in / Sign up

Export Citation Format

Share Document