scholarly journals Tropical and Extratropical Cyclone Detection Using Deep Learning

2020 ◽  
Vol 59 (12) ◽  
pp. 1971-1985
Author(s):  
Christina Kumler-Bonfanti ◽  
Jebb Stewart ◽  
David Hall ◽  
Mark Govett

AbstractExtracting valuable information from large sets of diverse meteorological data is a time-intensive process. Machine-learning methods can help to improve both speed and accuracy of this process. Specifically, deep-learning image-segmentation models using the U-Net structure perform faster and can identify areas that are missed by more restrictive approaches, such as expert hand-labeling and a priori heuristic methods. This paper discusses four different state-of-the-art U-Net models designed for detection of tropical and extratropical cyclone regions of interest (ROI) from two separate input sources: total precipitable water output from the Global Forecast System (GFS) model and water vapor radiance images from the Geostationary Operational Environmental Satellite (GOES). These models are referred to as International Best Track Archive for Climate Stewardship (IBTrACS)-GFS, Heuristic-GFS, IBTrACS-GOES, and Heuristic-GOES. All four U-Nets are fast information extraction tools and perform with an ROI detection accuracy ranging from 80% to 99%. These are additionally evaluated with the Dice and Tversky intersection-over-union (IoU) metrics, having Dice coefficient scores ranging from 0.51 to 0.76 and Tversky coefficients ranging from 0.56 to 0.74. The extratropical cyclone U-Net model performed 3 times as fast as the comparable heuristic model used to detect the same ROI. The U-Nets were specifically selected for their capabilities in detecting cyclone ROI beyond the scope of the training labels. These machine-learning models identified more ambiguous and active ROI missed by the heuristic model and hand-labeling methods that are commonly used in generating real-time weather alerts, having a potentially direct impact on public safety.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


Author(s):  
Jarrett Booz ◽  
Josh McGiff ◽  
William G. Hatcher ◽  
Wei Yu ◽  
James Nguyen ◽  
...  

In this article, the authors implement a deep learning environment and fine-tune parameters to determine the optimal settings for the classification of Android malware from extracted permission data. By determining the optimal settings, the authors demonstrate the potential performance of a deep learning environment for Android malware detection. Specifically, an extensive study is conducted on various hyper-parameters to determine optimal configurations, and then a performance evaluation is carried out on those configurations to compare and maximize detection accuracy in our target networks. The results achieve a detection accuracy of approximately 95%, with an approximate F1 score of 93%. In addition, the evaluation is extended to include other machine learning frameworks, specifically comparing Microsoft Cognitive Toolkit (CNTK) and Theano with TensorFlow. The future needs are discussed in the realm of machine learning for mobile malware detection, including adversarial training, scalability, and the evaluation of additional data and features.


2017 ◽  
Author(s):  
Christoph Sommer ◽  
Rudolf Hoefler ◽  
Matthias Samwer ◽  
Daniel W. Gerlich

AbstractSupervised machine learning is a powerful and widely used method to analyze high-content screening data. Despite its accuracy, efficiency, and versatility, supervised machine learning has drawbacks, most notably its dependence on a priori knowledge of expected phenotypes and time-consuming classifier training. We provide a solution to these limitations with CellCognition Explorer, a generic novelty detection and deep learning framework. Application to several large-scale screening data sets on nuclear and mitotic cell morphologies demonstrates that CellCognition Explorer enables discovery of rare phenotypes without user training, which has broad implications for improved assay development in high-content screening.


2019 ◽  
Vol 7 (4) ◽  
pp. 1-24 ◽  
Author(s):  
Jarrett Booz ◽  
Josh McGiff ◽  
William G. Hatcher ◽  
Wei Yu ◽  
James Nguyen ◽  
...  

In this article, the authors implement a deep learning environment and fine-tune parameters to determine the optimal settings for the classification of Android malware from extracted permission data. By determining the optimal settings, the authors demonstrate the potential performance of a deep learning environment for Android malware detection. Specifically, an extensive study is conducted on various hyper-parameters to determine optimal configurations, and then a performance evaluation is carried out on those configurations to compare and maximize detection accuracy in our target networks. The results achieve a detection accuracy of approximately 95%, with an approximate F1 score of 93%. In addition, the evaluation is extended to include other machine learning frameworks, specifically comparing Microsoft Cognitive Toolkit (CNTK) and Theano with TensorFlow. The future needs are discussed in the realm of machine learning for mobile malware detection, including adversarial training, scalability, and the evaluation of additional data and features.


2013 ◽  
Vol 67 (2) ◽  
pp. 249-262 ◽  
Author(s):  
Junbo Shi ◽  
Yang Gao

Integer ambiguity resolution is able to improve positioning accuracy and reduce convergence time in Precise Point Positioning (PPP). Although significantly improved horizontal positioning accuracy has been demonstrated, the height solution improvement is found to be less significant, and improving this requires further investigation. In this paper, a troposphere constraint method using precise troposphere corrections is proposed to improve the PPP ambiguity-resolved height solution. This is different from the conventional approach that typically applies meteorological data to calculate the a priori troposphere delay and estimates the residual troposphere delay. The effects of the troposphere delay on PPP ambiguity-resolved height solutions are first studied. Numerical analysis is conducted to ambiguity-resolved positioning results based on the decoupled clock model and hourly Global Positioning System (GPS) observations from a Canadian PPP-inferred troposphere precipitable water vapour system. The results show that by using the proposed method the PPP ambiguity-resolved height accuracy can be further improved to 3·86 cm compared to 5·32 cm using the conventional approach.


2021 ◽  
Author(s):  
Elżbieta Lasota

<p>Precise and reliable information on the tropospheric temperature and water vapour profiles plays a key role in weather and climate studies. Among the sensors supporting the atmosphere's observation, one can distinguish the Global Navigation Satellite System Radio Occultation (RO) technique, which provides accurate and high-quality meteorological profiles of temperature, pressure and water vapour. However, external knowledge about temperature is essential to estimate other physical atmospheric parameters. Hence, to overcome the constraint of the need of a priori temperature profile for each RO event, I trained and evaluated 4 different machine learning models comprising Artificial Neural Network (ANN) and Random Forest regression algorithms, where no auxiliary meteorological data is needed. To develop the models, I employed almost 7000 RO profiles between October 2019 and June 2020 over the part of the western North Pacific in Taiwan's vicinity (110-130° E; 10-30° N). Input vectors consisted of bending angle or refractivity profiles from the Formosa Satellite‐7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 mission together with the month, hour, and latitude of the RO event. Whilst temperature, pressure and water vapour profiles derived from the modern ERA5 reanalysis and interpolated to the RO location served as the models' targets. Evaluation on the testing data set revealed a good agreement between all model outputs and ERA5 targets. Slightly better statistics were noted for ANN and refractivity inputs, however, these differences can be considered as negligible. Root mean square error (RMSE) did not exceed 2 K for the temperature, 1.5 hPa for pressure, and reached slightly more than 2.5 hPa for water vapour below 2 km altitude. Additional validation with 56 colocated radiosonde observations and operational one-dimensional variational product confirms these findings with vertically averaged RMSE of around 1.3 K, 1.0 hPa and 0.5 hPa for the temperature, pressure and water vapour, respectively.</p>


2017 ◽  
Vol 28 (23) ◽  
pp. 3428-3436 ◽  
Author(s):  
Christoph Sommer ◽  
Rudolf Hoefler ◽  
Matthias Samwer ◽  
Daniel W. Gerlich

Supervised machine learning is a powerful and widely used method for analyzing high-content screening data. Despite its accuracy, efficiency, and versatility, supervised machine learning has drawbacks, most notably its dependence on a priori knowledge of expected phenotypes and time-consuming classifier training. We provide a solution to these limitations with CellCognition Explorer, a generic novelty detection and deep learning framework. Application to several large-scale screening data sets on nuclear and mitotic cell morphologies demonstrates that CellCognition Explorer enables discovery of rare phenotypes without user training, which has broad implications for improved assay development in high-content screening.


Author(s):  
K. Suzuki ◽  
M. Claesen ◽  
H. Takeda ◽  
B. De Moor

Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly pushed ‘shallow’ machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view, utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms for the sake of generally fast and fine optimization, which enables us not only to optimize (hyper)parameters but also to determine appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets, common datasets in computer vision field for character recognition and object recognition problems respectively, our automated learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset), small amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high possibility that our approach contributes to general classification problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guo X. Hu ◽  
Bao L. Hu ◽  
Zhong Yang ◽  
Li Huang ◽  
Ping Li

Severe weather and long-term driving of vehicles lead to various cracks on asphalt pavement. If these cracks cannot be found and repaired in time, it will have a negative impact on the safe driving of vehicles. Traditional artificial detection has some problems, such as low efficiency and missing detection. The detection model based on machine learning needs artificial design of pavement crack characteristics. According to the pavement distress identification manual proposed by the Federal Highway Administration (FHWA), these categories have three different types of cracks, such as fatigue, longitudinal crack, and transverse cracks. In the face of many types of pavement cracks, it is difficult to design a general feature extraction model to extract pavement crack features, which leads to the poor effect of the automatic detection model based on machine learning. Object detection based on the deep learning model has achieved good results in many fields. As a result, those models have become possible for pavement crack detection. This paper discusses the latest YOLOv5 series detection model for pavement crack detection and is to find out an effective training and detection method. Firstly, the 3001 asphalt crack pavement images with the original size of 2976 × 3978 pixels are collected using a digital camera and are randomly divided into three types according to the severity levels of low, medium, and high. Then, for the dataset of crack pavement, YOLOv5 series models are used for training and testing. The experimental results show that the detection accuracy of the YOLOv5l model is the highest, reaching 88.1%, and the detection time of the YOLOv5s model is the shortest, only 11.1 ms for each image.


Author(s):  
Joy Iong-Zong Chen ◽  
Kong-Long Lai

With the exponential increase in the usage of the internet, numerous organisations, including the financial industry, have operationalized online services. The massive financial losses occur as a result of the global growth in financial fraud. Henceforth, devising advanced financial fraud detection systems can actively detect the risks such as illegal transactions and irregular attacks. Over the recent years, these issues are tackled to a larger extent by means of data mining and machine learning techniques. However, in terms of unknown attack pattern identification, big data analytics and speed computation, several improvements must be performed in these techniques. The Deep Convolution Neural Network (DCNN) scheme based financial fraud detection scheme using deep learning algorithm is proposed in this paper. When large volume of data is involved, the detection accuracy can be enhanced by using this technique. The existing machine learning models, auto-encoder model and other deep learning models are compared with the proposed model to evaluate the performance by using a real-time credit card fraud dataset. Over a time duration of 45 seconds, a detection accuracy of 99% has been obtained by using the proposed model as observed in the experimental results.


Sign in / Sign up

Export Citation Format

Share Document