scholarly journals The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

2012 ◽  
Vol 69 (1) ◽  
pp. 236-257 ◽  
Author(s):  
Scott A. Braun ◽  
Jason A. Sippel ◽  
David S. Nolan

Abstract This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (~3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward-moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

2013 ◽  
Vol 70 (12) ◽  
pp. 3859-3875 ◽  
Author(s):  
Xuyang Ge ◽  
Tim Li ◽  
Melinda Peng

Abstract A set of idealized experiments using the Weather Research and Forecasting model (WRF) were designed to investigate the impacts of a midlevel dry air layer, vertical shear, and their combined effects on tropical cyclone (TC) development. Compared with previous studies that focused on the relative radial position of dry air with no mean flow, it is found that the combined effect of dry air and environmental vertical shear can greatly affect TC development. Moreover, this study indicates the importance of dry air and vertical shear orientations in determining the impact. The background vertical shear causes the tilting of an initially vertically aligned vortex. The shear forces a secondary circulation (FSC) with ascent (descent) in the downshear (upshear) flank. Hence, convection tends to be favored on the downshear side. The FSC reinforced by the convection may overcome the shear-induced drifting and “restore” the vertical alignment. When dry air is located in the downshear-right quadrant of the initial vortex, the dry advection by cyclonic circulation brings the dry air to the downshear side and suppresses moist convection therein. Such a process disrupts the “restoring” mechanism associated with the FSC and thus inhibits TC development. The sensitivity experiments show that, for a fixed dry air condition, a marked difference occurs in TC development between an easterly and a westerly shear background.


2019 ◽  
Vol 76 (6) ◽  
pp. 1809-1826 ◽  
Author(s):  
Shuai Wang ◽  
Ralf Toumi

Abstract The impact of dry midlevel air on the outer circulation of tropical cyclones is investigated in idealized simulations with and without a moist envelope protecting the inner core. It is found that a dry midlevel layer away from the cyclone center can broaden the outer primary circulation and thus the overall destructive potential at both developing and mature stages. The midlevel outer drying enhances the horizontal gradient of latent heating in the rainbands and drives the expansion of the outer circulation. The moist convection at large radii is suppressed rapidly after the midlevel air is dried in the outer rainbands. An enhanced horizontal gradient of latent heating initiates a radial–vertical overturning circulation anomaly in the rainbands. This anomalous overturning circulation accelerates the radial inflow of the main secondary circulation, increases the angular momentum import, and thus increases the cyclone size. The dry air, mixed into the boundary layer from the midtroposphere, is “recharged” by high enthalpy fluxes because of the increased thermodynamical disequilibrium above the sea surface. This recharge process protects the eyewall convection from the environmental dry-air ventilation. The proposed mechanism may explain the continuous expansion in the tropical cyclone outer circulation after maturity, as found in observations.


2015 ◽  
Vol 15 (11) ◽  
pp. 16111-16139 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity in the environment, which deforms the quasi-Lagrangian boundary of the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. However, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2015 ◽  
Vol 15 (24) ◽  
pp. 14041-14053 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts relative to the storm path. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity that deforms the quasi-Lagrangian boundary of the storm and changes the moisture transport into the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. In contrast, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2019 ◽  
Vol 147 (5) ◽  
pp. 1491-1511 ◽  
Author(s):  
Timothy Glotfelty ◽  
Kiran Alapaty ◽  
Jian He ◽  
Patrick Hawbecker ◽  
Xiaoliang Song ◽  
...  

Abstract The Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI) is developed for studying aerosol effects on gridscale and subgrid-scale clouds using common aerosol activation and ice nucleation formulations and double-moment cloud microphysics in a scale-aware subgrid-scale parameterization scheme. Comparisons of both the standard WRF and WRF-ACI models’ results for a summer season against satellite and reanalysis estimates show that the WRF-ACI system improves the simulation of cloud liquid and ice water paths. Correlation coefficients for nearly all evaluated parameters are improved, while other variables show slight degradation. Results indicate a strong cloud lifetime effect from current climatological aerosols increasing domain average cloud liquid water path and reducing domain average precipitation as compared to a simulation with aerosols reduced by 90%. Increased cloud-top heights indicate a thermodynamic invigoration effect, but the impact of thermodynamic invigoration on precipitation is overwhelmed by the cloud lifetime effect. A combination of cloud lifetime and cloud albedo effects increases domain average shortwave cloud forcing by ~3.0 W m−2. Subgrid-scale clouds experience a stronger response to aerosol levels, while gridscale clouds are subject to thermodynamic feedbacks because of the design of the WRF modeling framework. The magnitude of aerosol indirect effects is shown to be sensitive to the choice of autoconversion parameterization used in both the gridscale and subgrid-scale cloud microphysics, but spatial patterns remain qualitatively similar. These results indicate that the WRF-ACI model provides the community with a computationally efficient tool for exploring aerosol–cloud interactions.


2012 ◽  
Vol 27 (4) ◽  
pp. 878-897 ◽  
Author(s):  
Shu-Chih Yang ◽  
Eugenia Kalnay ◽  
Takemasa Miyoshi

Abstract A mesoscale ensemble Kalman filter (EnKF) for a regional model is often initialized from global analysis products and with initial ensemble perturbations constructed based on the background error covariance used in the three-dimensional variational data assimilation (3DVar) system. Because of the lack of proper mesoscale information, a long spinup period of typically a few days is required for the regional EnKF to reach its asymptotic level of accuracy, and thus, the impact of observations is limited during the EnKF spinup. For the case of typhoon assimilation, such spinup usually corresponds to the stages of generation and development of tropical cyclones, when observations are important but limited over open waters. To improve the analysis quality during the spinup, the “running in place” (RIP) method is implemented within the framework of the local ensemble transform Kalman filter (LETKF) coupled with the Weather Research and Forecasting model (WRF). Results from observing system simulation experiments (OSSEs) for a specific typhoon show that the RIP method is able to accelerate the analysis adjustment of the dynamical structures of the typhoon during the LETKF spinup, and improves both the accuracy of the mean state and the structure of the ensemble-based error covariance. These advantages of the RIP method are found not only in the inner-core structure of the typhoon but also identified in the environmental conditions. As a result, the LETKF-RIP analysis leads to better typhoon prediction, particularly in terms of both track and intensity.


Author(s):  
Mykhailo Frolov ◽  

Different aspects of the application of short-term and long-term meteorological forecasting in the work of agricultural companies of different scales were investigated in this paper. Systematic assessment and consideration of weather factors in the work of agricultural companies of various scales is very important on the way to effective management and increase profits, especially in today's climate change. The use of existing global meteorological models does not always allow to obtain a detailed and qualitative forecast for individual areas, which is important for assessing the impact of weather on crops. The advantages of using the mesoscale Weather Research and Forecasting Model (WRF) for agricultural companies are considered. The results of short-term and medium- term WRF modeling can be used by agricultural campaigns to assess the potential negative impact of weather conditions on crops, as well as in preventive decisions to reduce the negative impact of extreme weather events on crops. The problem of the need for significant computing resources for mesoscale modeling can be solved by using commercial Cloud platforms, which are more cost-effective than purchasing high-performance computer systems (HPC). The scheme of application of short-term and medium-term weather forecasting in agricultural companies by realization of mesoscale modeling with Weather Research and Forecasting Model (WRF) and with application of cloud technologies was developed. The result of the proposed scheme are graphic products of meteorological quantities and weather maps of the modeling area (where crops are located), which is a ready product for analysis by agricultural companies for further agricultural and technical decision making process.


2018 ◽  
Vol 75 (11) ◽  
pp. 3887-3910 ◽  
Author(s):  
Kuan-Chieh Huang ◽  
Chun-Chieh Wu

Abstract Tropical cyclones (TCs) encountering the terrain of Taiwan usually experience prominent track deflection, resulting in uncertainty in TC track forecasts. The underlying mechanisms of TC deflection are examined to better understand the pattern of TC tracks under various flow regimes. In this study, idealized experiments are carried out utilizing the Advanced Research version of the Weather Research and Forecasting (WRF) Model. This study investigates the motion of a TC that is deflected southward while moving westward toward an idealized terrain similar to Taiwan. An analysis of both the flow asymmetries and the potential vorticity tendency (PVT) demonstrates that horizontal advection contributes to the southward movement of the TC. The track deflection is examined in two separate time periods, with different mechanisms leading to the southward movement. Changes in the background flow induced by the terrain first cause the large-scale steering current to push the TC southward while the TC is still far from the terrain. As the TC approaches the idealized topography, the role of the inner-core dynamics becomes important, and the TC terrain-induced channeling effect results in further southward deflection. Asymmetries in the midlevel flow also develop during this period, in part associated with the effect of vertical momentum transport. The combination of the large-scale environmental flow, the low-level channeling effect, and asymmetries in the midlevel flow all contribute to the southward deflection of the TC track.


2012 ◽  
Vol 13 (2) ◽  
pp. 695-708 ◽  
Author(s):  
Thomas K. Flesch ◽  
Gerhard W. Reuter

Abstract This study examines simulations of two flooding events in Alberta, Canada, during June 2005, made using the Weather Research and Forecasting Model (WRF). The model was used in a manner readily accessible to nonmeteorologists (e.g., accepting default choices and parameters) and with a relatively large spatial resolution for rapid model runs. The simulations were skillful: strong storms were developed having the correct timing and location, generating precipitation rates close to observations, and with precipitation amounts near that observed. The model was then used to examine the sensitivity of the two storms to the topography of the Rocky Mountains. Comparing model results using the actual topographic grid with those of a reduced-mountain grid, it is concluded that a reduction in mountain elevation decreases maximum precipitation by roughly 50% over the mountains and foothills. There was little sensitivity to topography in the precipitation outside the mountains.


2021 ◽  
Author(s):  
Juan José Rosa Cánovas ◽  
Matilde García-Valdecasas Ojeda ◽  
Patricio Yeste-Donaire ◽  
Emilio Romero-Jiménez ◽  
María Jesús Esteban-Parra ◽  
...  

<p>Soil moisture (SM) is one of the fields with a relevant role in processes involving land-atmosphere interactions, especially in regions such as the Mediterranean Europe, where coupling between those components of the climate system is very strong. The aim of this study is to address the impact of initial soil conditions on drought and precipitation extremes over the Iberian Peninsula (IP). For this purpose, a dynamical downscalling experiment has been conducted by using the Weather Research and Forecasting model (WRF) along the period 1990-2000. Two one-way nested domains has been considered: a finer domain spanning the IP, with spatial resolution around 10 km, nested within a coarser domain covering the Euro-CORDEX region at 50 km of spatial resolution.</p><p>WRF simulations have been driven with ERA-Interim reanalysis data for all fields except for SM. Initial SM conditions can be divided into three different types: wet, dry and very dry. Values corresponding to initial SM states have been calculated by combining the WRF soil texture map along with the Soil Moisture Index (SMI). For wet conditions, SMI = 1 has been assigned; for dry conditions, SMI = -0.5; and for very dry conditions, SMI = -1. For a grid point with a given texture class, field capacity, wilting point and SMI are used to obtain initial SM. Two different initial dates have been taken into account to also consider the effect of initializing at different moments in the year: 1990-01-01 00:00:00 UTC and 1990-07-01 00:00:00 UTC. Therefore, 6 experimental runs have been carried out (2 initial dates x 3 initial SM). Additionally, a control run full-driven with ERA-Interim has been conducted from 1982 to 2000 to be used as reference. In this context, the impact of initial conditions on different extreme precipitation indices (R5xDay, SDII and R10mm) and on the Standardized Precipitation Index (SPI) for drought has been addressed.</p><p>Results could help to better understand the relevance of land-atmosphere processes in climate modeling, particularly in assessing WRF sensitivity to variations in SM and its skill to detect drought and precipitation extremes. This information could be notably useful in those applications in which initial conditions are especially relevant, such as the seasonal-to-decadal climate prediction.</p><p>Keywords: soil moisture, initial conditions, precipitation extremes, drought, regional climate, Weather Research and Forecasting model</p><p>ACKNOWLEDGEMENTS: JJRC acknowledges the Spanish Ministry of Science, Innovation and Universities for the predoctoral fellowship (grant code: PRE2018-083921). This research has been carried out in the framework of the projects CGL2017-89836-R, funded by the Spanish Ministry of Economy and Competitiveness with additional FEDER funds, and B-RNM-336-UGR18, funded by FEDER / Junta de Andalucía - Ministry of Economy and Knowledge.</p>


Sign in / Sign up

Export Citation Format

Share Document