Variability and Predictability of a Three-Dimensional Hurricane in Statistical Equilibrium

2013 ◽  
Vol 70 (6) ◽  
pp. 1806-1820 ◽  
Author(s):  
Bonnie R. Brown ◽  
Gregory J. Hakim

Abstract The internal variability and predictability of idealized three-dimensional hurricanes is investigated using 100-day-long, statistically steady simulations in a compressible, nonhydrostatic, cloud-resolving model. The equilibrium solution is free of the confounding effects of initial conditions and environmental variability in order to isolate the “intrinsic” characteristics of the hurricane. The variance of the axisymmetric tangential velocity is dominated by two patterns: one characterized by a radial shift of the maximum wind, and the other by intensity modulation at the radius of maximum wind. These patterns are associated with convectively coupled bands of anomalous wind speed that propagate inward from large radii with a period of roughly 5 days, the strongest of which is associated with an eyewall replacement cycle. The asymmetric tangential wind is strongest radially inward of the radius of maximum wind. On average, asymmetries decelerate the azimuthal-mean tangential wind at the radius of maximum wind and accelerate it along the inner edge of eyewall. Predictability of axisymmetric storm structure is measured through the autocorrelation e-folding time and linear inverse modeling. Results from both methods reveal an intrinsic predictability time scale of about 2 days. The predictability and variability of the axisymmetric storm structure are consistent with recently obtained results from idealized axisymmetric hurricane modeling.

2013 ◽  
Vol 13 (10) ◽  
pp. 26795-26840
Author(s):  
L. L. Lussier ◽  
M. T. Montgomery ◽  
M. M. Bell

Abstract. Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low-levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and Lopez (2011), but differ in their suggested key result and related scientific implication that the pre-Nuri disturbance was spinning down on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave-like disturbance provides a favorable environment for convective-vorticity organization and low-level spin-up on the mesoscale.


2014 ◽  
Vol 14 (16) ◽  
pp. 8795-8812 ◽  
Author(s):  
L. L. Lussier III ◽  
M. T. Montgomery ◽  
M. M. Bell

Abstract. Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical, and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin-up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and López-Carrillo (2011), but differ in their suggested key results and related scientific implications that the pre-Nuri disturbance was spinning down in the planetary boundary layer on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave-like disturbance provides a favorable environment for convective vorticity organization and low-level spin-up on the mesoscale.


2013 ◽  
Vol 70 (4) ◽  
pp. 993-1005 ◽  
Author(s):  
Gregory J. Hakim

Abstract The variability and predictability of axisymmetric hurricanes are determined from a 500-day numerical simulation of a tropical cyclone in statistical equilibrium. By design, the solution is independent of the initial conditions and environmental variability, which isolates the “intrinsic” axisymmetric hurricane variability. Variability near the radius of maximum wind is dominated by two patterns: one associated primarily with radial shifts of the maximum wind, and one primarily with intensity change at the time-mean radius of maximum wind. These patterns are linked to convective bands that originate more than 100 km from the storm center and propagate inward. Bands approaching the storm produce eyewall replacement cycles, with an increase in storm intensity as the secondary eyewall contracts radially inward. A dominant time period of 4–8 days is found for the convective bands, which is hypothesized to be determined by the time scale over which subsidence from previous bands suppresses convection; a leading-order estimate based on the ratio of the Rossby radius to band speed fits the hypothesis. Predictability limits for the idealized axisymmetric solution are estimated from linear inverse modeling and analog forecasts, which yield consistent results showing a limit for the azimuthal wind of approximately 3 days. The optimal initial structure that excites the leading pattern of 24-h forecast-error variance has largest azimuthal wind in the midtroposphere outside the storm and a secondary maximum just outside the radius of maximum wind. Forecast errors grow by a factor of 24 near the radius of maximum wind.


1998 ◽  
Vol 65 (4) ◽  
pp. 939-951 ◽  
Author(s):  
A. Chatterjee ◽  
A. Ruina

We present a geometric representation of the set of three-dimensional rigid-body collisional impulses that are reasonably permissible by the combination of non-negative post-collision separation rate, non-negative collisional compression impulse, non-negative energy dissipation and the Coulomb friction inequality. The construction is presented for a variety of special collisional situations involving special symmetry or extremes in the mass distribution, the friction coefficient, or the initial conditions. We review a variety of known friction laws and show how they do and do not fit in the permissible region in impulse space as well as comment on other attributes of these laws. We present a few parameterizations of the full permissible region of impulse space. We present a simple generalization to arbitrary three-dimensional point contact collisions of a simple law previously only applicable to objects with contact-inertia eigenvectors aligned with the surface normal and initial relative tangential velocity component (e.g., spheres and disks). This new algebraic collision law has two restitution parameters for general three-dimensional frictional single-point rigid-body collisions. The new law generates a collisional impulse that is a weighted sum of the impulses from a frictionless but nonrebounding collision and from a perfectly sticking, nonrebounding collision. We describe useful properties of our law; show geometrically the set of impulses it can predict for several collisional situations; and compare it with existing laws. For simultaneous collisions we propose that the new algebraic law be used by recursively breaking these collisions into a sequence ordered by the normal approach velocities of potential contact pairs.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Gang Xu ◽  
Guangwei Zhao ◽  
Jing Chen ◽  
Shuqi Wang ◽  
Weichao Shi

The value of the tangential velocity on the Boundary Value Problem (BVP) is inaccurate when comparing the results with analytical solutions by Indirect Boundary Element Method (IBEM), especially at the intersection region where the normal vector is changing rapidly (named nonsmooth boundary). In this study, the singularity of the BVP, which is directly arranged in the center of the surface of the fluid computing domain, is moved outside the computational domain by using the Desingularized Boundary Integral Equation Method (DBIEM). In order to analyze the accuracy of the IBEM/DBIEM and validate the above-mentioned problem, three-dimensional uniform flow over a sphere has been presented. The convergent study of the presented model has been investigated, including desingularized distance in the DBIEM. Then, the numerical results were compared with the analytical solution. It was found that the accuracy of velocity distribution in the flow field has been greatly improved at the intersection region, which has suddenly changed the boundary surface shape of the fluid domain. The conclusions can guide the study on the flow over nonsmooth boundaries by using boundary value method.


2013 ◽  
Vol 57 (03) ◽  
pp. 125-140
Author(s):  
Daniel A. Liut ◽  
Kenneth M. Weems ◽  
Tin-Guen Yen

A quasi-three-dimensional hydrodynamic model is presented to simulate shallow water phenomena. The method is based on a finite-volume approach designed to solve shallow water equations in the time domain. The nonlinearities of the governing equations are considered. The methodology can be used to compute green water effects on a variety of platforms with six-degrees-of-freedom motions. Different boundary and initial conditions can be applied for multiple types of moving platforms, like a ship's deck, tanks, etc. Comparisons with experimental data are discussed. The shallow water model has been integrated with the Large Amplitude Motions Program to compute the effects of green water flow over decks within a time-domain simulation of ship motions in waves. Results associated to this implementation are presented.


Author(s):  
Yuanlong Li ◽  
Yuqing Wang ◽  
Yanluan Lin ◽  
Xin Wang

AbstractThe radius of maximum wind (RMW) has been found to contract rapidly well preceding rapid intensification in tropical cyclones (TCs) in recent literature but the understanding of the involved dynamics is incomplete. In this study, this phenomenon is revisited based on ensemble axisymmetric numerical simulations. Consistent with previous studies, because the absolute angular momentum (AAM) is not conserved following the RMW, the phenomenon can not be understood based on the AAM-based dynamics. Both budgets of tangential wind and the rate of change in the RMW are shown to provide dynamical insights into the simulated relationship between the rapid intensification and rapid RMW contraction. During the rapid RMW contraction stage, due to the weak TC intensity and large RMW, the moderate negative radial gradient of radial vorticity flux and small curvature of the radial distribution of tangential wind near the RMW favor rapid RMW contraction but weak diabatic heating far inside the RMW leads to weak low-level inflow and small radial absolute vorticity flux near the RMW and thus a relatively small intensification rate. As RMW contraction continues and TC intensity increases, diabatic heating inside the RMW and radial inflow near the RMW increase, leading to a substantial increase in radial absolute vorticity flux near the RMW and thus the rapid TC intensification. However, the RMW contraction rate decreases rapidly due to the rapid increase in the curvature of the radial distribution of tangential wind near the RMW as the TC intensifies rapidly and RMW decreases.


2017 ◽  
Vol 145 (10) ◽  
pp. 4187-4203 ◽  
Author(s):  
Feng Chen ◽  
Xudong Liang ◽  
Hao Ma

An improved Doppler radar radial velocity assimilation observation operator is proposed based on the integrating velocity–azimuth process (IVAP) method. This improved operator can ingest both radial wind and its spatial distribution characteristics to deduce the two components of the mean wind within a given area. With this operator, the system can be used to assimilate information from tangential wind and radial wind. On the other hand, because the improved observation operator is defined within a given area, which can be uniformly chosen in both the observation and analysis coordinate systems, it has a thinning function. The traditional observation operator and the improved observation operator, along with their corresponding data processing modules, were implemented in the community Gridpoint Statistical Interpolation analysis system (GSI) to demonstrate the superiority of the improved operator. The results of single analysis unit experiments revealed that the two operators are comparable when the analysis unit is small. When the analysis unit becomes larger, the analysis results of the improved operator are better than those of the traditional operator because the former can ingest more wind information than the latter. The results of a typhoon case study indicated that both operators effectively ingested radial wind information and produced more reasonable typhoon structures than those in the background fields. The tangential velocity relative to the radar was retrieved by the improved operator through ingesting tangential wind information from the spatial distribution characteristics of radial wind. Because of the improved vortex intensity and structure, obvious improvements were seen in both track and intensity predictions when the improved operator was used.


2002 ◽  
Vol 124 (3) ◽  
pp. 481-488 ◽  
Author(s):  
M. Burger ◽  
G. Klose ◽  
G. Rottenkolber ◽  
R. Schmehl ◽  
D. Giebert ◽  
...  

Polydisperse sprays in complex three-dimensional flow systems are important in many technical applications. Numerical descriptions of sprays are used to achieve a fast and accurate prediction of complex two-phase flows. The Eulerian and Lagrangian methods are two essentially different approaches for the modeling of disperse two-phase flows. Both methods have been implemented into the same computational fluid dynamics package which is based on a three-dimensional body-fitted finite volume method. Considering sprays represented by a small number of droplet starting conditions, the Eulerian method is clearly superior in terms of computational efficiency. However, with respect to complex polydisperse sprays, the Lagrangian technique gives a higher accuracy. In addition, Lagrangian modeling of secondary effects such as spray-wall interaction enhances the physical description of the two-phase flow. Therefore, in the present approach the Eulerian and the Lagrangian methods have been combined in a hybrid method. The Eulerian method is used to determine a preliminary solution of the two-phase flow field. Subsequently, the Lagrangian method is employed to improve the accuracy of the first solution using detailed sets of initial conditions. Consequently, this combined approach improves the overall convergence behavior of the simulation. In the final section, the advantages of each method are discussed when predicting an evaporating spray in an intake manifold of an internal combustion engine.


2018 ◽  
Vol 859 ◽  
pp. 59-88 ◽  
Author(s):  
Philip B. Kirk ◽  
Anya R. Jones

The leading-edge vortex (LEV) is a powerful unsteady flow structure that can result in significant unsteady loads on lifting blades and wings. Using force, surface pressure and flow field measurements, this work represents an experimental campaign to characterize LEV behaviour in sinusoidally surging flows with widely varying amplitudes and frequencies. Additional tests were conducted in reverse flow surge, with kinematics similar to the tangential velocity profile seen by a blade element in recent high-advance-ratio rotor experiments. General results demonstrate the variability of LEV convection properties with reduced frequency, which greatly affected the average lift-to-drag ratio in a cycle. Analysis of surface pressure measurements suggests that LEV convection speed is a function only of the local instantaneous flow velocity. In the rotor-comparison tests, LEVs formed in reverse flow surge were found to convect more quickly than the corresponding reverse flow LEVs that form on a high-advance-ratio rotor, demonstrating that rotary motion has a stabilizing effect on LEVs. The reverse flow surging LEVs were also found to be of comparable strength to those observed on the high-advance-ratio rotor, leading to the conclusion that a surging-wing simplification might provide a suitable basis for low-order models of much more complex three-dimensional flows.


Sign in / Sign up

Export Citation Format

Share Document