scholarly journals On the Role of Asymmetric Convective Bursts to the Problem of Hurricane Intensification: Radiation of Vortex Rossby Waves and Wave–Mean Flow Interactions

2014 ◽  
Vol 71 (6) ◽  
pp. 2057-2077 ◽  
Author(s):  
Konstantinos Menelaou ◽  
M. K. Yau

Abstract The role of asymmetric convection to the intensity change of a weak vortex is investigated with the aid of a “dry” thermally forced model. Numerical experiments are conducted, starting with a weak vortex forced by a localized thermal anomaly. The concept of wave activity, the Eliassen–Palm flux, and eddy kinetic energy are then applied to identify the nature of the dominant generated waves and to diagnose their kinematics, structure, and impact on the primary vortex. The physical reasons for which disagreements with previous studies exist are also investigated utilizing the governing equation for potential vorticity (PV) perturbations and a number of sensitivity experiments. From the control experiment, it is found that the response of the vortex is dominated by the radiation of a damped sheared vortex Rossby wave (VRW) that acts to accelerate the symmetric flow through the transport of angular momentum. An increase of the kinetic energy of the symmetric flow by the VRW is shown also from the eddy kinetic energy budget. Additional tests performed on the structure and the magnitude of the initial thermal forcing confirm the robustness of the results and emphasize the significance of the wave–mean flow interaction to the intensification process. From the sensitivity experiments, it is found that for a localized thermal anomaly, regardless of the baroclinicity of the vortex and the radial and vertical gradients of the thermal forcing, the resultant PV perturbation follows a damping behavior, thus suggesting that deceleration of the vortex should not be expected.

2021 ◽  
Author(s):  
Stephan Juricke ◽  
Sergey Danilov ◽  
Marcel Oliver ◽  
Nikolay Koldunov ◽  
Dmitry Sidorenko ◽  
...  

<p>Capturing mesoscale eddy dynamics is crucial for accurate simulations of the large-scale ocean currents as well as oceanic and climate variability. Eddy-mean flow interactions affect the position, strength and variations of mean currents and eddies are important drivers of oceanic heat transport and atmosphere-ocean-coupling. However, simulations at eddy-permitting resolutions are substantially underestimating eddy variability and eddy kinetic energy many times over. Such eddy-permitting simulations will be in use for years to come, both in coupled and uncoupled climate simulations. We present a set of kinetic energy backscatter schemes with different complexity as alternative momentum closures that can alleviate some eddy related biases such as biases in the mean currents, in sea surface height variability and in temperature and salinity. The complexity of the schemes reflects in their computational costs, the related simulation improvements and their adaptability to different resolutions. However, all schemes outperform classical viscous closures and are computationally less expensive than a related necessary resolution increase to achieve similar results. While the backscatter schemes are implemented in the ocean model FESOM2, the concepts can be adjusted to any ocean model including NEMO.</p>


2012 ◽  
Vol 42 (6) ◽  
pp. 956-972 ◽  
Author(s):  
Andrew F. Thompson ◽  
Jean-Baptiste Sallée

Abstract The Southern Ocean’s Antarctic Circumpolar Current (ACC) naturally lends itself to interpretations using a zonally averaged framework. Yet, navigation around steep and complicated bathymetric obstacles suggests that local dynamics may be far removed from those described by zonally symmetric models. In this study, both observational and numerical results indicate that zonal asymmetries, in the form of topography, impact global flow structure and transport properties. The conclusions are based on a suite of more than 1.5 million virtual drifter trajectories advected using a satellite altimetry–derived surface velocity field spanning 17 years. The focus is on sites of “cross front” transport as defined by movement across selected sea surface height contours that correspond to jets along most of the ACC. Cross-front exchange is localized in the lee of bathymetric features with more than 75% of crossing events occurring in regions corresponding to only 20% of the ACC’s zonal extent. These observations motivate a series of numerical experiments using a two-layer quasigeostrophic model with simple, zonally asymmetric topography, which often produces transitions in the front structure along the channel. Significantly, regimes occur where the equilibrated number of coherent jets is a function of longitude and transport barriers are not periodic. Jet reorganization is carried out by eddy flux divergences acting to both accelerate and decelerate the mean flow of the jets. Eddy kinetic energy is amplified downstream of topography due to increased baroclinicity related to topographic steering. The combination of high eddy kinetic energy and recirculation features enhances particle exchange. These results stress the complications in developing consistent circumpolar definitions of the ACC fronts.


2021 ◽  
Vol 48 (18) ◽  
Author(s):  
Hemant Khatri ◽  
Stephen M. Griffies ◽  
Takaya Uchida ◽  
Han Wang ◽  
Dimitris Menemenlis

Author(s):  
J. Michael Battalio

AbstractThe ability of Martian reanalysis datasets to represent the growth and decay of short-period (1.5 < P < 8 sol) transient eddies is compared across the Mars Analysis Correction Data Assimilation (MACDA), Open access to Mars Assimilated Remote Soundings (OpenMARS), and Ensemble Mars Reanalysis System (EMARS). Short-period eddies are predominantly surface-based, have the largest amplitudes in the northern hemisphere, and are found, in order of decreasing eddy kinetic energy amplitude, in Utopia, Acidalia, and Arcadia Planitae in the northern hemisphere, and south of the Tharsis Plateau and between Argyre and Hellas Basins in the southern hemisphere. Short-period eddies grow on the upstream (western) sides of basins via baroclinic energy conversion and by extracting energy from the mean flow and long-period (P > 8 sol) eddies when interacting with high relief. Overall, the combined impact of barotropic energy conversion is a net loss of eddy kinetic energy, which rectifies previous conflicting results. When Thermal Emission Spectrometer observations are assimilated (Mars years 24–27), all three reanalyses agree on eddy amplitude and timing, but during the Mars Climate Sounder (MCS) observational era (Mars years 28–33), eddies are less constrained. The EMARS ensemble member has considerably higher eddy generation than the ensemble mean, and bulk eddy amplitudes in the deterministic OpenMARS reanalysis agree with the EMARS ensemble rather than the EMARS member. Thus, analysis of individual eddies during the MCS era should only be performed when eddy amplitudes are large and when there is agreement across reanalyses.


2005 ◽  
Vol 32 (14) ◽  
pp. n/a-n/a ◽  
Author(s):  
Øyvind Knutsen ◽  
Harald Svendsen ◽  
Svein Østerhus ◽  
Tom Rossby ◽  
Bogi Hansen

2009 ◽  
Vol 39 (9) ◽  
pp. 2011-2023 ◽  
Author(s):  
Emily Shuckburgh ◽  
Helen Jones ◽  
John Marshall ◽  
Chris Hill

Abstract A diagnostic framework is presented, based on the Nakamura effective diffusivity, to investigate the regional variation in eddy diffusivity. Comparison of three different diffusivity calculations enables the effects of locally enhanced tracer diffusion to be distinguished from the streamwise average. It also enables the distinction to be made between locally generated complexity in the tracer structure and that advected into a particular domain. The technique is applied to the Pacific sector of the Southern Ocean. The results highlight the important role that the mean flow plays in determining eddy diffusivity. The effective diffusivity is not simply related to the eddy kinetic energy: in regions of a strong mean flow the eddy diffusivity can be suppressed even in the presence of moderately strong eddy activity; conversely, in a region of weak mean flow the eddy diffusivity can be enhanced even in the presence of only weak eddy activity. This casts doubt on the ability of parameterizations based solely on the eddy kinetic energy to adequately characterize the eddy diffusivity in regions of strongly varying mean flow such as the Southern Ocean. The results are, however, consistent with the eddy transport and mixing variability predicted by potential-vorticity-based arguments.


2016 ◽  
Vol 73 (5) ◽  
pp. 2049-2059 ◽  
Author(s):  
Rei Chemke ◽  
Yohai Kaspi

Abstract The effect of eddy–eddy interactions on zonal and meridional macroturbulent scales is investigated over a wide range of eddy scales, using high-resolution idealized GCM simulations with and without eddy–eddy interactions. The wide range of eddy scales is achieved through systematic variation of the planetary rotation rate and thus multiple-jet planets. It is found that not only are eddy–eddy interactions not essential for the formation of jets, but the existence of eddy–eddy interactions decreases the number of eddy-driven jets in the atmosphere. The eddy–eddy interactions have little effect on the jet scale, which in both types of simulations coincides with the Rhines scale through all latitudes. The decrease in the number of jets in the presence of eddy–eddy interactions occurs because of the narrowing of the latitudinal region where zonal jets appear. This narrowing occurs because eddy–eddy interactions are mostly important at latitudes poleward of where the Rhines scale is equal to the Rossby deformation radius. Thus, once eddy–eddy interactions are removed, the conversion from baroclinic to barotropic eddy kinetic energy increases, and eddy–mean flow interactions intrude into these latitudes and maintain additional jets there. The eddy–eddy interactions are found to increase the energy-containing zonal scale so it coincides with the jets’ scale and thus make the flow more isotropic. While the conversion scale coincides with the most unstable scale, the Rossby deformation radius does not provide a good indication to these scales in both types of simulations.


2005 ◽  
Vol 35 (11) ◽  
pp. 2090-2103 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen

Abstract Twelve years of sea surface height (SSH) data from multiple satellite altimeters are used to investigate the low-frequency changes and the interconnections of the Kuroshio Extension (KE) jet, its southern recirculation gyre, and their mesoscale eddy field. The dominant signal is characterized by the steady weakening of the KE jet/recirculation gyre from 1993 to 1996, followed by a gradual strengthening after 1997. During the weakening period of 1993–96, the KE path migrated southward in general, and this path migration reversed in direction during the strengthening period of the KE jet and recirculation gyre after 1997. By hindcasting the SSH signals using linear vorticity dynamics, it was found that weakening (strengthening) in the KE jet and recirculation gyre is consistent with westward propagation of negative (positive) SSH anomalies generating in the eastern North Pacific and strengthening during their westward propagation. When the KE jet and recirculation gyre were in a weak mode during 1996–2001, the regional eddy kinetic energy level was observed to be higher than when the jet and recirculation gyre were in a strong mode. This negative correlation between the mean flow intensity and the level of regional eddy kinetic energy is found in both the SSH data and the linear vorticity model to result from the migration of the KE jet inflow over the Izu–Ogasawara Ridge. When it is forced southward by the impinging negative SSH anomalies, the KE jet inflow rides over the ridge through a shallow segment, leading to large-amplitude downstream meanders. Impinging of positive SSH anomalies, on the other hand, strengthens the recirculation gyre and forces the inflow northward where it passes through a deep channel, minimizing the path perturbations in the downstream region.


2014 ◽  
Vol 142 (8) ◽  
pp. 2751-2771 ◽  
Author(s):  
Julia H. Keller ◽  
Sarah C. Jones ◽  
Patrick A. Harr

Abstract The extratropical transition (ET) of Hurricane Hanna (2008) and Typhoon Choi-Wan (2009) caused a variety of forecast scenarios in the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS). The dominant development scenarios are extracted for two ensemble forecasts initialized prior to the ET of those tropical storms, using an EOF and fuzzy clustering analysis. The role of the transitioning tropical cyclone and its impact on the midlatitude flow in the distinct forecast scenarios is examined by conducting an analysis of the eddy kinetic energy budget in the framework of downstream baroclinic development. This budget highlights sources and sinks of eddy kinetic energy emanating from the transitioning tropical cyclone or adjacent upstream midlatitude flow features. By comparing the budget for several forecast scenarios for the ET of each of the two tropical cyclones, the role of the transitioning storms on the development in downstream regions is investigated. Distinct features during the interaction between the tropical cyclone and the midlatitude flow turned out to be important. In the case of Hurricane Hanna, the duration of baroclinic conversion from eddy available potential into eddy kinetic energy was important for the amplification of the midlatitude wave pattern and the subsequent reintensification of Hanna as an extratropical cyclone. In the case of Typhoon Choi-Wan, the phasing between the storm and the midlatitude flow was one of the most critical factors for the future development.


Sign in / Sign up

Export Citation Format

Share Document