scholarly journals The Effect of Eddy–Eddy Interactions on Jet Formation and Macroturbulent Scales

2016 ◽  
Vol 73 (5) ◽  
pp. 2049-2059 ◽  
Author(s):  
Rei Chemke ◽  
Yohai Kaspi

Abstract The effect of eddy–eddy interactions on zonal and meridional macroturbulent scales is investigated over a wide range of eddy scales, using high-resolution idealized GCM simulations with and without eddy–eddy interactions. The wide range of eddy scales is achieved through systematic variation of the planetary rotation rate and thus multiple-jet planets. It is found that not only are eddy–eddy interactions not essential for the formation of jets, but the existence of eddy–eddy interactions decreases the number of eddy-driven jets in the atmosphere. The eddy–eddy interactions have little effect on the jet scale, which in both types of simulations coincides with the Rhines scale through all latitudes. The decrease in the number of jets in the presence of eddy–eddy interactions occurs because of the narrowing of the latitudinal region where zonal jets appear. This narrowing occurs because eddy–eddy interactions are mostly important at latitudes poleward of where the Rhines scale is equal to the Rossby deformation radius. Thus, once eddy–eddy interactions are removed, the conversion from baroclinic to barotropic eddy kinetic energy increases, and eddy–mean flow interactions intrude into these latitudes and maintain additional jets there. The eddy–eddy interactions are found to increase the energy-containing zonal scale so it coincides with the jets’ scale and thus make the flow more isotropic. While the conversion scale coincides with the most unstable scale, the Rossby deformation radius does not provide a good indication to these scales in both types of simulations.

2021 ◽  
Author(s):  
Stephan Juricke ◽  
Sergey Danilov ◽  
Marcel Oliver ◽  
Nikolay Koldunov ◽  
Dmitry Sidorenko ◽  
...  

<p>Capturing mesoscale eddy dynamics is crucial for accurate simulations of the large-scale ocean currents as well as oceanic and climate variability. Eddy-mean flow interactions affect the position, strength and variations of mean currents and eddies are important drivers of oceanic heat transport and atmosphere-ocean-coupling. However, simulations at eddy-permitting resolutions are substantially underestimating eddy variability and eddy kinetic energy many times over. Such eddy-permitting simulations will be in use for years to come, both in coupled and uncoupled climate simulations. We present a set of kinetic energy backscatter schemes with different complexity as alternative momentum closures that can alleviate some eddy related biases such as biases in the mean currents, in sea surface height variability and in temperature and salinity. The complexity of the schemes reflects in their computational costs, the related simulation improvements and their adaptability to different resolutions. However, all schemes outperform classical viscous closures and are computationally less expensive than a related necessary resolution increase to achieve similar results. While the backscatter schemes are implemented in the ocean model FESOM2, the concepts can be adjusted to any ocean model including NEMO.</p>


2014 ◽  
Vol 71 (6) ◽  
pp. 2057-2077 ◽  
Author(s):  
Konstantinos Menelaou ◽  
M. K. Yau

Abstract The role of asymmetric convection to the intensity change of a weak vortex is investigated with the aid of a “dry” thermally forced model. Numerical experiments are conducted, starting with a weak vortex forced by a localized thermal anomaly. The concept of wave activity, the Eliassen–Palm flux, and eddy kinetic energy are then applied to identify the nature of the dominant generated waves and to diagnose their kinematics, structure, and impact on the primary vortex. The physical reasons for which disagreements with previous studies exist are also investigated utilizing the governing equation for potential vorticity (PV) perturbations and a number of sensitivity experiments. From the control experiment, it is found that the response of the vortex is dominated by the radiation of a damped sheared vortex Rossby wave (VRW) that acts to accelerate the symmetric flow through the transport of angular momentum. An increase of the kinetic energy of the symmetric flow by the VRW is shown also from the eddy kinetic energy budget. Additional tests performed on the structure and the magnitude of the initial thermal forcing confirm the robustness of the results and emphasize the significance of the wave–mean flow interaction to the intensification process. From the sensitivity experiments, it is found that for a localized thermal anomaly, regardless of the baroclinicity of the vortex and the radial and vertical gradients of the thermal forcing, the resultant PV perturbation follows a damping behavior, thus suggesting that deceleration of the vortex should not be expected.


2010 ◽  
Vol 656 ◽  
pp. 448-457 ◽  
Author(s):  
ANDREAS VALLGREN ◽  
ERIK LINDBORG

High-resolution simulations of forced quasi-geostrophic (QG) turbulence reveal that Charney isotropy develops under a wide range of conditions, and constitutes a preferred state also in β-plane and freely decaying turbulence. There is a clear analogy between two-dimensional and QG turbulence, with a direct enstrophy cascade that is governed by the prediction of Kraichnan (J. Fluid Mech., vol. 47, 1971, p. 525) and an inverse energy cascade following the classic k−5/3 scaling. Furthermore, we find that Charney's prediction of equipartition between the potential and kinetic energy in each of the two horizontal velocity components is approximately fulfilled in the inertial ranges.


2021 ◽  
Vol 62 (10) ◽  
Author(s):  
Francesca De Serio ◽  
Roni H. Goldshmid ◽  
Dan Liberzon ◽  
Michele Mossa ◽  
M. Eletta Negretti ◽  
...  

AbstractThe present study has the main purpose to experimentally investigate a turbulent momentum jet issued in a basin affected by rotation and in presence of porous obstructions. The experiments were carried out at the Coriolis Platform at LEGI Grenoble (FR). A large and unique set of velocity data was obtained by means of a Particle Image Velocimetry measurement technique while varying the rotation rate of the tank and the density of the canopy. The main differences in jet behavior in various flow configurations were assessed in terms of mean flow, turbulent kinetic energy and jet spreading. The jet trajectory was also detected. The results prove that obstructions with increasing density and increased rotation rates induce a more rapid abatement of both jet velocity and turbulent kinetic energy. The jet trajectories can be scaled by a characteristic length, which is found to be a function of the jet initial momentum, the rotation rate, and the drag exerted by the obstacles. An empirical expression for the latter is also proposed and validated. Graphic abstract


2011 ◽  
Vol 68 (10) ◽  
pp. 2459-2464 ◽  
Author(s):  
Yohai Kaspi ◽  
Tapio Schneider

Abstract The Northern Hemisphere storm tracks have maximum intensity over the Pacific and Atlantic basins; their intensity is reduced over the continents downstream. Here, simulations with an idealized aquaplanet general circulation model are used to demonstrate that even without continents, storm tracks have a self-determined longitudinal length scale. Their length is controlled primarily by the planetary rotation rate and is similar to that of Earth’s storm tracks for Earth’s rotation rate. Downstream, storm tracks self-destruct: the downstream eddy kinetic energy is lower than it would be without the zonal asymmetries that cause localized storm tracks. Likely involved in the downstream self-destruction of storm tracks are the energy fluxes associated with them. The zonal asymmetries that cause localized storm tracks enhance the energy transport through the generation of stationary eddies, and this leads to a reduced baroclinicity that persists far downstream of the eddy kinetic energy maxima.


1975 ◽  
Vol 68 (4) ◽  
pp. 639-672 ◽  
Author(s):  
A. Ibbetson ◽  
D. J. Tritton

Experiments have been carried out to investigate the effect of rotation of the whole system on decaying turbulence, generally similar to grid turbulence, generated in air in an annular container on a rotating table. Measurements to determine the structure of the turbulence were made during its decay, mean quantities being determined by a mixture of time and ensemble averaging. Quantities measured (as functions of time after the turbulence generation) were turbulence intensities perpendicular to and parallel to the rotation axis, spectra of these two components with respect to a wavenumber perpendicular to the rotation axis, and some correlation coefficients, selected to detect differences in length scales perpendicular and parallel to the rotation axis. The intensity measurements were made for a wide range of rotation rates; the other measurements were made at a single rotation rate (selected to give a Rossby number varying during the decay from about 1 to small values) and, for comparison, at zero rotation. Subsidiary experiments were carried out to measure the spin-up time of the system, and to determine whether the turbulence produced any mean flow relative to the container.A principal result is that increasing the rotation rate produces faster decay of the turbulence; the nature of the additional energy sink is an important part of the interpretation. Other features of the results are as follows: the measurements with-outrotation can be satisfactorily related to wind-tunnel measurements; even with rotation, the ratio of the intensities in the two directions remains substantially constant; the normalized spectra for the rotating and the non-rotating cases show surprising similarity but do contain slight systematic differences, consistent with the length scales indicated by the correlations; rotation produces a large increase in the length scale parallel to the rotation axis and a smaller increase in that perpendicular to it; the turbulence produces no measurable mean flow.A model for the interpretation of the results is developed in terms of the action of inertial waves in carrying energy to the boundaries of the enclosure, where it is dissipated in viscous boundary layers. The model provides satisfactory explanations of the overall decay of the turbulence and of the decay of individual spectral components. Transfer of energy between wavenumbers plays a much less significant role in the dynamics of decay than in a non-rotating fluid. The relationship of the model to the interpretation of the length-scale difference in terms of the Taylor-Proudman theorem is discussed.The model implies that the overall dimensions of the system enter in an important way into the dynamics. This imposes a serious limitation on the application of the results to the geophysical situations at which experiments of this type are aimed.The paper includes some discussion of the possibility of energy transfer from the turbulence to a mean motion (the ‘vorticity expulsion’ hypothesis). It is possible, on the basis of the observations, to exclude this process as the additional turbulence energy sink. But this does not provide any evidence either for or against the hypothesis in the conditions for which it has been postulated.


2017 ◽  
Vol 59 (8) ◽  
pp. 988-996 ◽  
Author(s):  
Karin Markenroth Bloch ◽  
Johannes Töger ◽  
Freddy Ståhlberg

Background The cerebral aqueduct is a central conduit for cerebrospinal fluid (CSF), and non-invasive quantification of CSF flow in the aqueduct may be an important tool for diagnosis and follow-up of treatment. Magnetic resonance (MR) methods at clinical field strengths are limited by low spatial resolution. Purpose To investigate the feasibility of high-resolution through-plane MR flow measurements (2D-PC) in the cerebral aqueduct at high field strength (7T). Material and Methods 2D-PC measurements in the aqueduct were performed in nine healthy individuals at 7T. Measurement accuracy was determined using a phantom. Aqueduct area, mean velocity, maximum velocity, minimum velocity, net flow, and mean flow were determined using in-plane resolutions 0.8 × 0.8, 0.5 × 0.5, 0.3 × 0.3, and 0.2 × 0.2 mm2. Feasibility criteria were defined based on scan time and spatial and temporal resolution. Results Phantom validation of 2D-PC MR showed good accuracy. In vivo, stroke volume was −8.2 ± 4.4, −4.7 ± 2.8, −6.0 ± 3.8, and −3.7 ± 2.1 µL for 0.8 × 0.8, 0.5 × 0.5, 0.3 × 0.3, and 0.2 × 0.2 mm2, respectively. The scan with 0.3 × 0.3 mm2 resolution fulfilled the feasibility criteria for a wide range of heart rates and aqueduct diameters. Conclusion 7T MR enables non-invasive quantification of CSF flow and velocity in the cerebral aqueduct with high spatial resolution.


1999 ◽  
Vol 104 (D4) ◽  
pp. 3953-3969 ◽  
Author(s):  
David C. Fritts ◽  
Joseph R. Isler ◽  
Ruth S. Lieberman ◽  
Mark D. Burrage ◽  
Daniel R. Marsh ◽  
...  

2015 ◽  
Vol 72 (10) ◽  
pp. 3891-3907 ◽  
Author(s):  
Rei Chemke ◽  
Yohai Kaspi

Abstract The latitudinal width of atmospheric eddy-driven jets and scales of macroturbulence are examined latitude by latitude over a wide range of rotation rates using a high-resolution idealized GCM. It is found that for each latitude, through all rotation rates, the jet spacing scales with the Rhines scale. These simulations show the presence of a “supercriticality latitude” within the baroclinic zone, where poleward (equatorward) of this latitude, the Rhines scale is larger (smaller) than the Rossby deformation radius. Poleward of this latitude, a classic geostrophic turbulence picture appears with a − spectral slope of inverse cascade from the deformation radius up to the Rhines scale. A shallower slope than the −3 slope of enstrophy cascade is found from the deformation radius down to the viscosity scale as a result of the broad input of baroclinic eddy kinetic energy. At these latitudes, eddy–eddy interactions transfer barotropic eddy kinetic energy from the input scales of baroclinic eddy kinetic energy up to the jet scale and down to smaller scales. For the Earth case, this latitude is outside the baroclinic zone and therefore an inverse cascade does not appear. Equatorward of the supercriticality latitude, the − slope of inverse cascade vanishes, eddy–mean flow interactions play an important role in the balance, and the spectrum follows a −3 slope from the Rhines scale down to smaller scales, similar to what is observed on Earth. Moreover, the length scale of the energy-containing zonal wavenumber is equal to (larger than) the jet scale poleward (equatorward) of the supercriticality latitude.


2006 ◽  
Vol 63 (12) ◽  
pp. 3277-3295 ◽  
Author(s):  
Sachiyo Uno ◽  
Toshiki Iwasaki

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wave–mean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave effects, conservation properties, and lower boundary conditions. To gain physical insights into energetics based on the nonacceleration theorem, the wave energy W is defined as the sum of the eddy available potential energy PE and the eddy kinetic energy KE. The mainstream of the energy cascade is as follows: The diabatic heating produces the zonal mean available potential energy PZ, which is converted into the zonal mean kinetic energy KZ through the mean meridional circulation. The KZ is mainly converted to W through zonal wave–mean flow interactions and the rest is dissipated through friction. Not only the dynamical conversion but also the diabatic heating generates W, which is dissipated through friction. A diagnosis package is designed to analyze actual atmospheric data on the standard pressure surfaces. A validation study of the package is made by using the output from a general circulation model. The scheme accurately expresses tendencies of the zonal mean and eddy available potential energy equations, showing the diagnosis capability. On shorter time scales, PE changes in accordance with KE, good correlation indicating the relevance of the definition of wave energy. A preliminary study is made of the climate in December–February (DJF), and June–August (JJA), using the NCEP–NCAR reanalysis. The dynamical wave energy generation rate C(KZ, W) is about 60% of the conversion rate C(PZ, KZ), which means that KZ is dissipated through friction at a rate of about 40%. In the extratropics, C(KZ, W) is almost equal to C(PZ, KZ), as is expected from quasigeostrophic balance. In the subtropics, however, C(KZ, W) is much smaller than C(PZ, KZ), which suggests the importance of nongeostrophic effects on the energetics. The energetics is substantially different between the two solstices. Both C(PZ, KZ) and C(KZ, W) are about 30% larger in DJF than those in JJA, reflecting differences in wave activity. Stationary waves contribute considerably to energy conversions in the Northern Hemispheric winter, while baroclinic instability waves do more in the Southern Hemispheric winter than in the Northern Hemispheric winter.


Sign in / Sign up

Export Citation Format

Share Document