Horizontal Meandering as a Distinctive Feature of the Stable Boundary Layer

2019 ◽  
Vol 76 (10) ◽  
pp. 3029-3046 ◽  
Author(s):  
L. Mortarini ◽  
D. Cava ◽  
U. Giostra ◽  
F. Denardin Costa ◽  
G. Degrazia ◽  
...  

Abstract Oscillations in the horizontal components of the wind velocity associated with oscillations in air temperature during low–wind speed episodes are ubiquitous in the stable boundary layer and are labeled as wind meandering. The meandering structure is recognizable by a clear negative lobe in the Eulerian autocorrelation functions of the horizontal wind velocity components and of the sonic temperature and by a corresponding peak at low frequency in the velocity components and temperature spectra. These distinctive features are used to isolate meandering occurrences and to study its properties in relation to the classical description of the planetary stable boundary layer. It is shown that the ratio of the variance of the wind velocity vertical component over the variance of the composite of the wind velocity horizontal components splits the frequency distribution of meandering and nonmeandering events and divides the nocturnal boundary layer in two different regimes characterized by different turbulent properties. The data comparison with a turbulence model based on Rotta return to isotropy showed that meandering and nonmeandering cases may have similar dynamics. This suggests that meandering may not be connected to a laminarization of the flow and shows that the Rotta scheme may still describe the energetic transfer between wind velocity components in the very stable boundary layer if the Rotta similarity constant c depends on the flux Richardson number. The data confirm a c value of 2.2 for Rif = 0 compatible with its conventional value. The analysis presented refers to one year of continuous measurements on 10 levels carried out at a coastal site in southeastern Brazil.

2020 ◽  
Author(s):  
Theodora Bello ◽  
Adewale Ajao ◽  
Oluwagbemiga Jegede

<p>The study investigates impact of wind speeds on the turbulent transport of CO<sub>2 </sub>fluxes for a land-surface atmosphere interface in a low-wind tropical area between May 28<sup>th</sup> and June 14<sup>th</sup>, 2010; and May 24<sup>th</sup> and June 15<sup>th</sup>, 2015. Eddy covariance technique was used to acquire turbulent mass fluxes of CO<sub>2</sub> and wind speed at the study site located inside the main campus of Obafemi Awolowo University, Ile – Ife, Nigeria. The results showed high levels of CO<sub>2 </sub>fluxes at nighttime attributed to stable boundary layer conditions and low wind speed. Large transport and distribution of CO<sub>2 </sub>fluxes were observed in the early mornings due to strong wind speeds recorded at the study location. In addition, negative CO<sub>2 </sub>fluxes were observed during the daytime attributed to prominent convective and photosynthetic activities. The study concludes there was an inverse relationship between turbulent transport of CO<sub>2 </sub>fluxes and wind speed for daytime period while nighttime CO<sub>2</sub> fluxes showed no significant correlation.</p><p><strong>Keywords</strong>: CO<sub>2 </sub>fluxes, Wind speed, Turbulent transport, Low-wind tropical area, Stable boundary layer</p>


2006 ◽  
Vol 63 (4) ◽  
pp. 1291-1307 ◽  
Author(s):  
B. B. Balsley ◽  
R. G. Frehlich ◽  
M. L. Jensen ◽  
Y. Meillier

Abstract Some 50 separate high-resolution profiles of small-scale turbulence defined by the energy dissipation rate (ɛ), horizontal wind speed, and temperature from near the surface, through the nighttime stable boundary layer (SBL), and well into the residual layer are used to compare the various definitions of SBL height during nighttime stable conditions. These profiles were obtained during postmidnight periods on three separate nights using the Tethered Lifting System (TLS) during the Cooperative Atmosphere–Surface Exchange Study (CASES-99) campaign in east-central Kansas, October 1999. Although the number of profiles is insufficient to make any definitive conclusions, the results suggest that, under most conditions, the boundary layer top can be reasonably estimated in terms of a very significant decrease in the energy dissipation rate (i.e., the mixing height) with height. In the majority of instances this height lies slightly below the height of a pronounced minimum in wind shear and slightly above a maximum in N 2, where N is the Brunt–Väisälä frequency. When combined with flux measurements and vertical velocity variance data obtained from the nearby 55-m tower, the results provide additional insights into SBL processes, even when the boundary layer, by any definition, extends to heights well above the top of the tower. Both the TLS profiles and tower data are then used for preliminary high-resolution studies into various categories of SBL structure, including the so-called upside-down boundary layer.


2018 ◽  
Vol 57 (11) ◽  
pp. 2623-2637 ◽  
Author(s):  
D. Finn ◽  
R. M. Eckman ◽  
Z. Gao ◽  
H. Liu

AbstractLarge, rapid, and intermittent changes in wind direction were commonly observed in low–wind speed conditions in the very stable boundary layer during the phase 2 of the Project Sagebrush field tracer study. This paper investigates the occurrence and magnitude of these wind direction changes in the very stable boundary layer and explores their associated meteorological factors. The evidence indicates that these wind direction changes occur mainly at wind speeds of less than 1.5 m s−1 and are associated with momentum and sensible heat fluxes approaching zero in low–wind shear conditions. This results in complete vertical decoupling. They are only weakly dependent on the magnitude of turbulence. The magnitude of the wind direction changes is generally greatest near the surface, because of the greater prevalence of low wind speeds there, and decreases upward.


2021 ◽  
Author(s):  
Karl Lapo ◽  
Antonia Fritz ◽  
Anita Freundorfer ◽  
Shravan K. Muppa ◽  
Christoph K. Thomas

<p>The stable boundary layer, especially the very stable boundary layer, (vSBL) is a fundamental challenge for boundary layer meteorology as assumptions such as ergodicity and local scaling do not apply. The violation of these commonly-employed theories is associated with the presence of submeso-scale structures, which span spatial scales between tens of meters and kilometers and temporal scales from tens of seconds up to an hour. The nature of these structures is largely unknown but they are suspected to encompass a wide-range of flow modes, including meandering of the horizontal wind direction, thermal submeso fronts, complex and unknown non-stationary modes, and relevant to this work, various wave modes. Progress on submeso-turbulence interactions requires distributed observations with fine enough resolution to separate between the submeso and turbulent scales.</p><p> </p><p>To that end we present results from FlyFOX in which fiber optic distributed sensing (FODS) was deployed along a tethered balloon. FODS yields spatially continuous observations of air temperature with fine spatial (0.25m – 0.5m) and temporal (1s-10s) resolutions along fiber optic cables that can span kilometers. In this case FlyFOX spanned between 0.5m and 200m height. FlyFOX was deployed in a broad mountain valley in the Ficthelgebirge mountains, Germany in which intense cold air pooling commonly occurs.</p><p> </p><p>Using FlyFOX we simultaneously characterize the spatial and temporal spectra of the boundary layer through morning transitions, revealing that the vSBL has a unique spectral enhancement between 80s-640s and 8m-64m relative to weakly-stable and neutral conditions. These scales correspond to a gap in the observational capabilities of existing methods, which FlyFOX fills.</p><p> </p><p>Corresponding to this observational gap, we demonstrate the existence of “sublayer striations”, thin (5m-20m) but persistent layers (duration up to an hour) of exceptionally stable air separated by layers of near-neutral stability. Using wavelet coherence for different time scales, gravity waves were found to be unable to penetrate into the sublayer striations and instead ducted in the neutral air between striations. During periods with overall lower static stability, these sublayer striations did not occur and waves acted across the entire depth of the SBL from ~120m down to ~0.5m and can be tracked propagating along the surface at 1m height using a near surface DTS array. These sublayer striations thereby acted to decouple the upper boundary layer from the surface layer in this mountain valley. FlyFOX and FODS provide an observational breakthrough for the study of vertical coupling and wave activity in the vSBL by closing an observational gap and facilitating observations of atmospheric properties from the turbulent to submeso scales.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 401
Author(s):  
Jonathan Biehl ◽  
Bastian Paas ◽  
Otto Klemm

City centers have to cope with an increasing amount of air pollution. The supply of fresh air is crucial yet difficult to ensure, especially under stable conditions of the atmospheric boundary layer. This case study used the PArallelized Large eddy simulation (LES) Model PALM to investigate the wind field over an urban lake that had once been built as a designated fresh air corridor for the city center of Münster, northwest, Germany. The model initialization was performed using the main wind direction and stable boundary layer conditions as input. The initial wind and temperature profiles included a weak nocturnal low-level jet. By emitting a passive scalar at one point on top of a bridge, the dispersion of fresh air could be traced over the lake’s surface, within street canyons leading to the city center and within the urban boundary layer above. The concept of city ventilation was confirmed in principle, but the air took a direct route from the shore of the lake to the city center above a former river bed and its adjoining streets rather than through the street canyons. According to the dispersion of the passive scalar, half of the city center was supplied with fresh air originating from the lake. PALM proved to be a useful tool to study fresh air corridors under stable boundary layer conditions.


Author(s):  
Lena Pfister ◽  
Karl Lapo ◽  
Larry Mahrt ◽  
Christoph K. Thomas

AbstractIn the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena.


2006 ◽  
Vol 63 (5) ◽  
pp. 1451-1466 ◽  
Author(s):  
Holger Siebert ◽  
Katrin Lehmann ◽  
Manfred Wendisch

Abstract Tethered balloon–borne measurements with a resolution in the order of 10 cm in a cloudy boundary layer are presented. Two examples sampled under different conditions concerning the clouds' stage of life are discussed. The hypothesis tested here is that basic ideas of classical turbulence theory in boundary layer clouds are valid even to the decimeter scale. Power spectral densities S( f ) of air temperature, liquid water content, and wind velocity components show an inertial subrange behavior down to ≈20 cm. The mean energy dissipation rates are ∼10−3 m2 s−3 for both datasets. Estimated Taylor Reynolds numbers (Reλ) are ∼104, which indicates the turbulence is fully developed. The ratios between longitudinal and transversal S( f ) converge to a value close to 4/3, which is predicted by classical turbulence theory for local isotropic conditions. Probability density functions (PDFs) of wind velocity increments Δu are derived. The PDFs show significant deviations from a Gaussian distribution with longer tails typical for an intermittent flow. Local energy dissipation rates ɛτ are derived from subsequences with a duration of τ = 1 s. With a mean horizontal wind velocity of 8 m s−1, τ corresponds to a spatial scale of 8 m. The PDFs of ɛτ can be well approximated with a lognormal distribution that agrees with classical theory. Maximum values of ɛτ ≈ 10−1 m2 s−3 are found in the analyzed clouds. The consequences of this wide range of ɛτ values for particle–turbulence interaction are discussed.


Sign in / Sign up

Export Citation Format

Share Document