scholarly journals An idealized 1½-layer isentropic model with convection and precipitation for satellite data assimilation research. Part II: model derivation

Abstract In this part II paper we present a fully consistent analytical derivation of the ‘dry’ isentropic 1½-layer shallow water model described and used in part I of this study, with no convection and precipitation. The mathematical derivation presented here is based on a combined asymptotic and slaved Hamiltonian analysis which is used to resolve an apparent inconsistency arising from the application of a rigid-lid approximation to an isentropic two-layer shallow water model. Real observations based on radiosonde data are used to justify the scaling assumptions used throughout the paper, as well as in part I. Eventually, a fully consistent isentropic 1½-layer model emerges from imposing fluid at rest (v1 = 0) and zero Montgomery potential (M1 = 0) in the upper layer of an isentropic two-layer model.

Abstract An isentropic 1½-layer model based on modified shallow water equations is presented, including terms mimicking convection and precipitation. This model is an updated version of the isopycnal single-layer modified shallow water model presented in Kent et al. (2017). The clearer link between fluid temperature and model variables together with a double-layer structure make this revised, isentropic model a more suitable tool to achieve our future goal: to conduct idealized experiments for investigating satellite data assimilation. The numerical model implementation is verified against an analytical solution for stationary waves in a rotating fluid, based on Shrira’s methodology for the isopycnal case. Recovery of the equivalent isopycnal model is also verified, both analytically and numerically. With convection and precipitation added, we show how complex model dynamics can be achieved exploiting rotation and relaxation to a meridional jet in a periodic domain. This solution represents a useful reference simulation or “truth” in conducting future (satellite) data-assimilation experiments, with additional atmospheric conditions and data. A formal analytical derivation of the isentropic 1½-layer model from an isentropic 2-layer model without convection and precipitation is shown in a companion paper (Part II).


2005 ◽  
Vol 15 (06) ◽  
pp. 843-869 ◽  
Author(s):  
B. DI MARTINO ◽  
P. ORENGA ◽  
M. PEYBERNES

In this paper, we present a new model for a bi-layer shallow water problem using the rigid-lid hypothesis. This model follows from the usual bi-layer model and can drastically decrease the computational time of simulation. But some mathematical and numerical difficulties appear. Particularly, we observe in the equations some terms in the form of 1/hi (where hi is the thickness of the layer) and we are not able to prove that hi > 0. To circumvent this difficulty, we replace in these terms hi by Hi > β > 0, where Hi is a characteristic thickness of the layer. This hypothesis is realistic if the fluctuations of hi are small, which is generally the case. Then, we prove existence and regularity results for this approximated problem which shows the convergence of the numerical scheme. Next, we present some comparative results in an idealized configuration between this model and the classical bi-layer shallow water model.


2019 ◽  
Vol 77 (1) ◽  
pp. 131-147
Author(s):  
Eric Bembenek ◽  
David N. Straub ◽  
Timothy M. Merlis

Abstract The effects of moisture on the energetics of a statistically stationary, baroclinically unstable jet representing the midlatitude atmosphere are examined using a two-layer, β-plane shallow-water model. Flow is driven by a relaxation of the interface between the two layers to a baroclinically unstable profile. Moisture is input to the lower layer by evaporation. When supersaturation occurs, precipitation is triggered and the related latent heat release drives a mass transfer between the two layers. A comparison between dry and moist reference atmospheres shows that precipitation reduces eddy kinetic energy. This is related to the meridional distribution of precipitation, which occurs on the poleward side of the jet (where the interface field is raised). This latitudinal structure of precipitation is related to a correlation between poleward flow and ascent, which is analyzed using a shallow-water analog to the ω equation. The precipitation effect on the energy budget is predominately due to zonal- and time-averaged terms. Because of this, dry simulations in which the thermal forcing is modified to mimic the effect of zonally averaged precipitation are carried out and compared with their precipitating counterparts. These simulations show a similar reduction of baroclinic eddy kinetic energy; however, the barotropic eddy kinetic energy response shows a larger difference.


2020 ◽  
Vol 32 (12) ◽  
pp. 124117
Author(s):  
M. W. Harris ◽  
F. J. Poulin ◽  
K. G. Lamb

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2054
Author(s):  
Naoki Kuroda ◽  
Katsuhide Yokoyama ◽  
Tadaharu Ishikawa

Our group has studied the spatiotemporal variation of soil and water salinity in an artificial salt marsh along the Arakawa River estuary and developed a practical model for predicting soil salinity. The salinity of the salt marsh and the water level of a nearby channel were measured once a month for 13 consecutive months. The vertical profile of the soil salinity in the salt marsh was measured once monthly over the same period. A numerical flow simulation adopting the shallow water model faithfully reproduced the salinity variation in the salt marsh. Further, we developed a soil salinity model to estimate the soil salinity in a salt marsh in Arakawa River. The vertical distribution of the soil salinity in the salt marsh was uniform and changed at almost the same time. The hydraulic conductivity of the soil, moreover, was high. The uniform distribution of salinity and high hydraulic conductivity could be explained by the vertical and horizontal transport of salinity through channels burrowed in the soil by organisms. By combining the shallow water model and the soil salinity model, the soil salinity of the salt marsh was well reproduced. The above results suggest that a stable brackish ecotone can be created in an artificial salt marsh using our numerical model as a design tool.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


Sign in / Sign up

Export Citation Format

Share Document