Easterly waves in the East Pacific during the OTREC 2019 field campaign

Author(s):  
Lidia Huaman ◽  
Eric D. Maloney ◽  
Courtney Schumacher ◽  
George N. Kiladis

AbstractEasterly waves (EWs) are off-equatorial tropical synoptic disturbances with a westward phase speed between 11-14 m s−1. Over the East Pacific in boreal summer, the combination of EWs and other synoptic disturbances, plus local mechanisms associated with sea surface temperature (SST) gradients, define the climatological structure of the Intertropical Convergence Zone (ITCZ). The East Pacific ITCZ has both deep and shallow convection that is linked to deep and shallow meridional circulations, respectively. The deep convection is located around 9°N over warm SSTs. The shallow convection is located around 6°N and is driven by the meridional SST gradient south of the ITCZ. This study aims to document the interaction between East Pacific EWs and the deep and shallow meridional circulations during the Organization of Tropical East Pacific Convection (OTREC) field campaign in 2019 using field campaign observations, ERA5 reanalysis, and satellite precipitation. We identified three EWs during the OTREC period using precipitation and dynamical fields. Composite analysis shows that the convectively active part of the EW enhances ITCZ deep convection and is associated with an export of column-integrated moist static energy (MSE) by vertical advection. The subsequent convectively suppressed, anticyclonic part of the EW produces an increase of moisture and column-integrated MSE by horizontal advection that likely enhances shallow convection and the shallow overturning flow at 850 hPa over the southern part of the ITCZ. Therefore, EWs appear to strongly modulate shallow and deep circulations in the East Pacific ITCZ.

2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2020 ◽  
Vol 77 (10) ◽  
pp. 3423-3440 ◽  
Author(s):  
Tao Feng ◽  
Jia-Yuh Yu ◽  
Xiu-Qun Yang ◽  
Ronghui Huang

AbstractThe companion of this paper, Part I, discovered the characteristics of the rainfall progression in tropical-depression (TD)-type waves over the western North Pacific. In Part II, the large-scale controls on the convective rainfall progression have been investigated using the ERA-Interim data and the TRMM 3B42 precipitation-rate data during June–October from 1998 to 2013 through budgets of moist static energy (MSE) and moisture. A buildup of column-integrated MSE occurs in advance of deep convection, and an export of MSE occurs following deep convection, which is consistent with the MSE recharge–discharge paradigm. The MSE recharge–discharge is controlled by horizontal processes, whereby horizontal moisture advection causes net MSE import prior to deep convection. Such moistening by horizontal advection creates a moist midtroposphere, which helps destabilize the atmospheric column, leading to the development of deep convective rainfall. Following the heaviest rainfall, negative horizontal moisture advection dries the troposphere, inhibiting convection. Such moistening and drying processes explain why deep convection can develop without preceding shallow convection. The advection of moisture anomalies by the mean horizontal flow controls the tropospheric moistening and drying processes. As the TD-type waves propagate northwestward in coincidence with the northwestward environmental flow, the moisture, or convective rainfall, is phase locked to the waves. The critical role of the MSE import by horizontal advection in modulating the rainfall progression is supported by the anomalous gross moist stability (AGMS), where the lowest AGMS corresponds to the quickest increase in the precipitation rate prior to the rainfall maximum.


2016 ◽  
Vol 73 (11) ◽  
pp. 4427-4437 ◽  
Author(s):  
Hien Xuan Bui ◽  
Jia-Yuh Yu ◽  
Chia Chou

Abstract Interactions between cumulus convection and its large-scale environment have been recognized as crucial to the understanding of tropical climate and its variability. In this study, the moist static energy (MSE) budget is employed to investigate the potential impact of the vertical structure of large-scale vertical motion in tropical climate based on results from both reanalysis data and model simulation. Two domains are selected over the western and eastern Pacific with vertical motion profiles that are dominated by top-heavy and bottom-heavy structures, respectively. The bottom-heavy structure is climatologically associated with more shallow convection, while the top-heavy structure is related to more deep convection. The column-integrated vertical MSE advection of top-heavy vertical motion is positive, while that of bottom-heavy vertical motion tends to be negative. Controlling factors responsible for the above vertical MSE advection contrast are discussed based on a simple decomposition of the MSE budget equation. It was found that the sign of vertical MSE advection is determined mainly by the vertical moisture transport, the magnitude of which is very sensitive to the structure of vertical motion. A top-heavy (bottom heavy) structure of vertical motion favors an export (import) of MSE and a positive (negative) value of the vertical MSE advection.


2018 ◽  
Vol 146 (3) ◽  
pp. 833-851 ◽  
Author(s):  
Wei Huang ◽  
J.-W. Bao ◽  
Xu Zhang ◽  
Baode Chen

ABSTRACT The authors coarse-grained and analyzed the output from a large-eddy simulation (LES) of an idealized extratropical supercell storm using the Weather Research and Forecasting (WRF) Model with various horizontal resolutions (200 m, 400 m, 1 km, and 3 km). The coarse-grained physical properties of the simulated convection were compared with explicit WRF simulations of the same storm at the same resolution of coarse-graining. The differences between the explicit simulations and the coarse-grained LES output increased as the horizontal grid spacing in the explicit simulation coarsened. The vertical transport of the moist static energy and total hydrometeor mixing ratio in the explicit simulations converged to the LES solution at the 200-m grid spacing. Based on the analysis of the coarse-grained subgrid vertical flux of the moist static energy, the authors confirmed that the nondimensional subgrid vertical flux of the moist static energy varied with the subgrid fractional cloudiness according to a function of fractional cloudiness, regardless of the box size. The subgrid mass flux could not account for most of the total subgrid vertical flux of the moist static energy because the eddy-transport component associated with the internal structural inhomogeneity of convective clouds was of a comparable magnitude. This study highlights the ongoing challenge in developing scale-aware parameterizations of subgrid convection.


2018 ◽  
Vol 31 (14) ◽  
pp. 5731-5748 ◽  
Author(s):  
Casey D. Burleyson ◽  
Samson M. Hagos ◽  
Zhe Feng ◽  
Brandon W. J. Kerns ◽  
Daehyun Kim

Abstract The characteristics of Madden–Julian oscillation (MJO) events that strengthen and weaken over the Maritime Continent (MC) are examined. The real-time multivariate MJO (RMM) index is used to assess changes in global MJO amplitude over the MC. The MJO weakens at least twice as often as it strengthens over the MC, with weakening MJOs being twice as likely during El Niño compared to La Niña years and the reverse for strengthening events. MJO weakening shows a pronounced seasonal cycle that has not been previously documented. During the Northern Hemisphere (NH) summer and fall the RMM index can strengthen over the MC. MJOs that approach the MC during the NH winter typically weaken according to the RMM index. This seasonal cycle corresponds to whether the MJO crosses the MC primarily north or south of the equator. Because of the seasonal cycle, weakening MJOs are characterized by positive sea surface temperature and moist-static energy anomalies in the Southern Hemisphere (SH) of the MC compared to strengthening events. Analysis of the outgoing longwave radiation (OLR) MJO index (OMI) shows that MJO precipitation weakens when it crosses the MC along the equator. A possible explanation of this based on previous results is that the MJO encounters more landmasses and taller mountains when crossing along the equator or in the SH. The new finding of a seasonal cycle in MJO weakening over the MC highlights the importance of sampling MJOs throughout the year in future field campaigns designed to study MJO–MC interactions.


2016 ◽  
Vol 73 (2) ◽  
pp. 743-759 ◽  
Author(s):  
Yukari Sumi ◽  
Hirohiko Masunaga

Abstract A moist static energy (MSE) budget analysis is applied to quasi-2-day waves to examine the effects of thermodynamic processes on the wave propagation mechanism. The 2-day waves are defined as westward inertia–gravity (WIG) modes identified with filtered geostationary infrared measurements, and the thermodynamic parameters and MSE budget variables computed from reanalysis data are composited with respect to the WIG peaks. The composite horizontal and vertical MSE structures are overall as theoretically expected from WIG wave dynamics. A prominent horizontal MSE advection is found to exist, although the wave dynamics is mainly regulated by vertical advection. The vertical advection decreases MSE around the times of the convective peak, plausibly resulting from the first baroclinic mode associated with deep convection. Normalized gross moist stability (NGMS) is used to examine the thermodynamic processes involving the large-scale dynamics and convective heating. NGMS gradually decreases to zero before deep convection and reaches a maximum after the convection peak, where low (high) NGMS leads (lags) deep convection. The decrease in NGMS toward zero before the occurrence of active convection suggests an increasingly efficient conversion from convective heating to large-scale dynamics as the wave comes in, while the increase afterward signifies that this linkage swiftly dies out after the peak.


2020 ◽  
pp. 1-56
Author(s):  
Kyle Itterly ◽  
Patrick Taylor ◽  
J. Brent Roberts

AbstractDiurnal air-sea coupling affects climate modes such as the Madden-Julian Oscillation (MJO) via the regional moist static energy budget. Prior to MJO initiation, large-scale subsidence increases (decreases) surface shortwave insolation (winds). These act in concert to significantly warm the uppermost layer of the ocean over the course of a single day and the ocean mixed layer over the course of 1-2 weeks. Here, we provide an integrated analysis of multiple surface, top-of-atmosphere, and atmospheric column observations to assess the covariability related to regions of strong diurnal sea surface temperature (dSST) warming over 44 MJO events between 2000-2018 to assess their role in MJO initiation. Combining satellite observations of evaporation and precipitation with reanalysis moisture budget terms, we find 30-50% enhanced moistening over high dSST regions during late afternoon using either ERA5 or MERRA-2 despite large model biases. Diurnally developing moisture convergence, only modestly weaker evaporation, and diurnal minimum precipitation act to locally enhance moistening over broad regions of enhanced diurnal warming, which rectifies onto the larger scale. Field campaign ship and sounding data corroborate that strong dSST periods are associated with reduced middle tropospheric humidity and larger diurnal amplitudes of surface warming, evaporation, instability, and column moistening. Further, we find greater daytime increases in low cloud cover and evidence of enhanced radiative destabilization for the top 50th dSST percentile. Together, these results support that dSST warming acts in concert with large-scale dynamics to enhance moist static energy during the suppressed to active phase transition of the MJO.


2006 ◽  
Vol 19 (20) ◽  
pp. 5405-5421 ◽  
Author(s):  
Ademe Mekonnen ◽  
Chris D. Thorncroft ◽  
Anantha R. Aiyyer

Abstract The association between convection and African easterly wave (AEW) activity over tropical Africa and the tropical Atlantic during the boreal summer is examined using satellite brightness temperature (TB) and ECMWF reanalysis datasets. Spectral analysis using 18 yr of TB data shows significant variance in the 2–6-day range across most of the region. Within the regions of deep convection, this time scale accounts for about 25%–35% of the total variance. The 2–6-day convective variance has similar amplitudes over western and eastern Africa, while dynamic measures of AEW activity show stronger amplitudes in the west. This study suggests that weak AEW activity in the east is consistent with initial wave development there and indicates that convection triggered on the western side of the mountains over central and eastern Africa, near Darfur (western Sudan) and Ethiopia, has a role in initiating AEWs westward. The subsequent development and growth of AEWs in West Africa is associated with stronger coherence with convection there. Results show large year-to-year variability in convection at the 2–6-day time scale, which tends to vary consistently with the mean convection and dynamical measures of AEW activity over West Africa and the Atlantic, but not over central and eastern Africa. The Darfur region is particularly important for providing convective precursors that propagate westward and trigger AEWs downstream. During wet years, convection over eastern Africa (western Ethiopian highlands) can be a significant source of AEW initiation. In addition to being important for precursors of AEWs, the Darfur region is also a source of convection that propagates eastward toward Ethiopia.


2006 ◽  
Vol 63 (12) ◽  
pp. 3421-3436 ◽  
Author(s):  
Marat Khairoutdinov ◽  
David Randall

Results are presented from a high-resolution three-dimensional simulation of shallow-to-deep convection transition based on idealization of observations made during the Large-Scale Biosphere–Atmosphere (LBA) experiment in Amazonia, Brazil, during the Tropical Rainfall Measuring Mission (TRMM)-LBA mission on 23 February. The doubly periodic grid has 1536 × 1536 × 256 grid cells with horizontal grid spacing of 100 m, thus covering an area of 154 × 154 km2. The vertical resolution varies from 50 m in the boundary layer to 100 m in the free troposphere and gradually coarsens to 250 m near the domain top at 25.4 km. The length of the simulation is 6 h, starting from an early morning sounding corresponding to 0730 local time. Convection is forced by prescribed surface latent and sensible heat fluxes and prescribed horizontally uniform radiative heating Despite a considerable amount of convective available potential energy (CAPE) in the range of 1600–2400 J kg−1, and despite virtually no convective inhibition (CIN) in the mean sounding throughout the simulation, the cumulus convection starts as shallow, gradually developing into congestus, and becomes deep only toward the end of simulation. Analysis shows that the reason is that the shallow clouds generated by the boundary layer turbulence are too small to penetrate deep into the troposphere, as they are quickly diluted by mixing with the environment. Precipitation and the associated cold pools are needed to generate thermals big enough to support the growth of deep clouds. This positive feedback involving precipitation is supported by a sensitivity experiment in which the cold pools are effectively eliminated by artificially switching off the evaporation of precipitation; in the experiment, the convection remains shallow throughout the entire simulation, with a few congestus but no deep clouds. The probability distribution function (PDF) of cloud size during the shallow, congestus, and deep phases is analyzed using a new method. During each of the three phases, the shallow clouds dominate the mode of the PDFs at about 1-km diameter. During the deep phase, the PDFs show cloud bases as wide as 4 km. Analysis of the joint PDFs of cloud size and in-cloud variables demonstrates that, as expected, the bigger clouds are far less diluted above their bases than their smaller counterparts. Also, thermodynamic properties at cloud bases are found to be nearly identical for all cloud sizes, with the moist static energy exceeding the mean value by as much as 4 kJ kg−1. The width of the moist static energy distribution in the boundary layer is mostly due to variability of water vapor; therefore, clouds appear to grow from the air with the highest water vapor content available. No undiluted cloudy parcels are found near the level of neutral buoyancy. It appears that a simple entraining-plume model explains the entrainment rates rather well. The least diluted plumes in the simulation correspond to an entrainment parameter of about 0.1 km−1.


Sign in / Sign up

Export Citation Format

Share Document