High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land

2006 ◽  
Vol 63 (12) ◽  
pp. 3421-3436 ◽  
Author(s):  
Marat Khairoutdinov ◽  
David Randall

Results are presented from a high-resolution three-dimensional simulation of shallow-to-deep convection transition based on idealization of observations made during the Large-Scale Biosphere–Atmosphere (LBA) experiment in Amazonia, Brazil, during the Tropical Rainfall Measuring Mission (TRMM)-LBA mission on 23 February. The doubly periodic grid has 1536 × 1536 × 256 grid cells with horizontal grid spacing of 100 m, thus covering an area of 154 × 154 km2. The vertical resolution varies from 50 m in the boundary layer to 100 m in the free troposphere and gradually coarsens to 250 m near the domain top at 25.4 km. The length of the simulation is 6 h, starting from an early morning sounding corresponding to 0730 local time. Convection is forced by prescribed surface latent and sensible heat fluxes and prescribed horizontally uniform radiative heating Despite a considerable amount of convective available potential energy (CAPE) in the range of 1600–2400 J kg−1, and despite virtually no convective inhibition (CIN) in the mean sounding throughout the simulation, the cumulus convection starts as shallow, gradually developing into congestus, and becomes deep only toward the end of simulation. Analysis shows that the reason is that the shallow clouds generated by the boundary layer turbulence are too small to penetrate deep into the troposphere, as they are quickly diluted by mixing with the environment. Precipitation and the associated cold pools are needed to generate thermals big enough to support the growth of deep clouds. This positive feedback involving precipitation is supported by a sensitivity experiment in which the cold pools are effectively eliminated by artificially switching off the evaporation of precipitation; in the experiment, the convection remains shallow throughout the entire simulation, with a few congestus but no deep clouds. The probability distribution function (PDF) of cloud size during the shallow, congestus, and deep phases is analyzed using a new method. During each of the three phases, the shallow clouds dominate the mode of the PDFs at about 1-km diameter. During the deep phase, the PDFs show cloud bases as wide as 4 km. Analysis of the joint PDFs of cloud size and in-cloud variables demonstrates that, as expected, the bigger clouds are far less diluted above their bases than their smaller counterparts. Also, thermodynamic properties at cloud bases are found to be nearly identical for all cloud sizes, with the moist static energy exceeding the mean value by as much as 4 kJ kg−1. The width of the moist static energy distribution in the boundary layer is mostly due to variability of water vapor; therefore, clouds appear to grow from the air with the highest water vapor content available. No undiluted cloudy parcels are found near the level of neutral buoyancy. It appears that a simple entraining-plume model explains the entrainment rates rather well. The least diluted plumes in the simulation correspond to an entrainment parameter of about 0.1 km−1.

2021 ◽  
pp. 1-65
Author(s):  
Pengfei Ren ◽  
Daehyun Kim ◽  
Min-Seop Ahn ◽  
Daehyun Kang ◽  
Hong-Li Ren

AbstractThis study conducts an intercomparison of the column-integrated moist static energy (MSE) and water vapor budget of the Madden-Julian Oscillation (MJO) among six modern global reanalysis products (RAs). Inter-RA differences in the mean MSE, MJO MSE anomalies, individual MSE budget terms and their relative contributions to the propagation and maintenance of MJO MSE anomalies are examined. Also investigated is the relationship between the MJO column water vapor (CWV) budget residuals with the other CWV budget terms as well as the two parameters that characterize cloud-radiation feedback and moisture-convection coupling.Results show a noticeable inter-RA spread in the mean state MSE, especially its vertical structure. In all RAs, horizontal MSE advection dominates the propagation of the MJO MSE while column-integrated longwave radiative heating and vertical MSE advection are found to be the key processes for MJO maintenance. The MSE budget terms directly affected by the model parameterization schemes exhibit high uncertainty. The differences in anomalous vertical velocity mainly contribute to the large differences in vertical MSE advection among the RAs. The budget residuals show large inter-RA differences and have non-negligible contributions to MJO maintenance and propagation in most RAs.RAs that underestimate (overestimate) the strength of cloud-radiation feedback and the convective moisture adjustment timescale tend to have positive (negative) MJO CWV budget residual, indicating the critical role of these processes in the maintenance of MJO CWV anomalies. Our results emphasize that a correct representation of the interactions among moisture, convection, cloud, and radiation is the key for an accurate depiction of the MJO MSE and CWV budget in RAs.


2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2014 ◽  
Vol 71 (10) ◽  
pp. 3747-3766 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Tristan S. L’Ecuyer

Abstract Temporal variability in the moist static energy (MSE) budget is studied with measurements from a combination of different satellites including the Tropical Rainfall Measuring Mission (TRMM) and A-Train platforms. A composite time series before and after the development of moist convection is obtained from the observations to delineate the evolution of MSE and moisture convergences and, in their combination, gross moist stability (GMS). A new algorithm is then applied to estimate large-scale vertical motion from energy budget constraints through vertical-mode decomposition into first and second baroclinic modes and a background shallow mode. The findings are indicative of a possible mechanism of tropical convection. A gradual destabilization is brought about by the MSE convergence intrinsic to the positive second baroclinic mode (congestus mode) that increasingly counteracts a weak MSE divergence in the background state. GMS is driven to nearly zero as the first baroclinic mode begins to intensify, accelerating the growth of vigorous large-scale updrafts and deep convection. As the convective burst peaks, the positive second mode switches to the negative mode (stratiform mode) and introduces an abrupt rise in MSE divergence that likely discourages further maintenance of deep convection. The first mode quickly dissipates and GMS increases away from zero, eventually returning to the background shallow-mode state. A notable caveat to this scenario is that GMS serves as a more reliable metric when defined with a radiative heating rate included to offset MSE convergence.


2018 ◽  
Vol 75 (5) ◽  
pp. 1545-1551 ◽  
Author(s):  
Simon P. de Szoeke

The atmospheric circulation depends on poorly understood interactions between the tropical atmospheric boundary layer (BL) and convection. The surface moist static energy (MSE) source (130 W m−2, of which 120 W m−2 is evaporation) to the tropical marine BL is balanced by upward MSE flux at the BL top that is the source for deep convection. Important for modeling tropical convection and circulation is whether MSE enters the free troposphere by dry turbulent processes originating within the boundary layer or by motions generated by moist deep convection in the free troposphere. Here, highly resolved observations of the BL quantify the MSE fluxes in approximate agreement with recent cloud-resolving models, but the fluxes depend on convective conditions. In convectively suppressed (weak precipitation) conditions, entrainment and downdraft fluxes export equal shares (60 W m−2) of MSE from the BL. Downdraft fluxes are found to increase 50%, and entrainment to decrease, under strongly convective conditions. Variable entrainment and downdraft MSE fluxes between the BL and convective clouds must both be considered for modeling the climate.


2018 ◽  
Vol 75 (6) ◽  
pp. 2107-2123 ◽  
Author(s):  
Ángel F. Adames ◽  
Yi Ming

Abstract The mechanisms that lead to the propagation of anomalous moisture and moist static energy (MSE) in monsoon low and high pressure systems, collectively referred to as synoptic-scale monsoonal disturbances (SMDs), are investigated using daily output fields from GFDL’s atmospheric general circulation model, version 4.0 (AM4.0). On the basis of linear regression analysis of westward-propagating rainfall anomalies of time scales shorter than 15 days, it is found that SMDs are organized into wave trains of three to four individual cyclones and anticyclones. These events amplify over the Bay of Bengal, reach a maximum amplitude over the eastern coast of India, and dissipate as they approach the Arabian Sea. The structure and propagation of the simulated SMDs resemble those documented in observations. It is found that moisture and MSE anomalies exhibit similar horizontal structures in the simulated SMDs, indicating that moisture is the leading contributor to MSE. Propagation of the moisture anomalies is governed by vertical moisture advection, while the MSE anomalies propagate because of horizontal advection of dry static energy by the anomalous winds. By combining the budgets, we interpret the propagation of the moisture anomalies in terms of lifting that is forced by horizontal dry static energy advection, that is, ascent along sloping isentropes. This process moistens the lower free troposphere, producing an environment that is more favorable to deep convection. Ascent driven by radiative heating is of primary importance to the maintenance of the moisture anomalies.


2015 ◽  
Vol 72 (8) ◽  
pp. 3199-3213 ◽  
Author(s):  
Nadir Jeevanjee ◽  
David M. Romps

Abstract The Davies-Jones formulation of effective buoyancy is used to define inertial and buoyant components of vertical force and to develop an intuition for these components by considering simple cases. This decomposition is applied to the triggering of new boundary layer mass flux by cold pools in a cloud-resolving simulation of radiative–convective equilibrium (RCE). The triggering is found to be dominated by inertial forces, and this is explained by estimating the ratio of the inertial forcing to the buoyancy forcing, which scales as H/h, where H is the characteristic height of the initial downdraft and h is the characteristic height of the mature cold pool’s gust front. In a simulation of the transition from shallow to deep convection, the buoyancy forcing plays a dominant role in triggering mass flux in the shallow regime, but the force balance tips in favor of inertial forcing just as precipitation sets in, consistent with the RCE results.


2018 ◽  
Vol 146 (3) ◽  
pp. 833-851 ◽  
Author(s):  
Wei Huang ◽  
J.-W. Bao ◽  
Xu Zhang ◽  
Baode Chen

ABSTRACT The authors coarse-grained and analyzed the output from a large-eddy simulation (LES) of an idealized extratropical supercell storm using the Weather Research and Forecasting (WRF) Model with various horizontal resolutions (200 m, 400 m, 1 km, and 3 km). The coarse-grained physical properties of the simulated convection were compared with explicit WRF simulations of the same storm at the same resolution of coarse-graining. The differences between the explicit simulations and the coarse-grained LES output increased as the horizontal grid spacing in the explicit simulation coarsened. The vertical transport of the moist static energy and total hydrometeor mixing ratio in the explicit simulations converged to the LES solution at the 200-m grid spacing. Based on the analysis of the coarse-grained subgrid vertical flux of the moist static energy, the authors confirmed that the nondimensional subgrid vertical flux of the moist static energy varied with the subgrid fractional cloudiness according to a function of fractional cloudiness, regardless of the box size. The subgrid mass flux could not account for most of the total subgrid vertical flux of the moist static energy because the eddy-transport component associated with the internal structural inhomogeneity of convective clouds was of a comparable magnitude. This study highlights the ongoing challenge in developing scale-aware parameterizations of subgrid convection.


2014 ◽  
Vol 71 (11) ◽  
pp. 4276-4291 ◽  
Author(s):  
Adam Sobel ◽  
Shuguang Wang ◽  
Daehyun Kim

Abstract The authors analyze the column-integrated moist static energy budget over the region of the tropical Indian Ocean covered by the sounding array during the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment in late 2011. The analysis is performed using data from the sounding array complemented by additional observational datasets for surface turbulent fluxes and atmospheric radiative heating. The entire analysis is repeated using the ECMWF Interim Re-Analysis (ERA-Interim). The roles of surface turbulent fluxes, radiative heating, and advection are quantified for the two MJO events that occurred in October and November using the sounding data; a third event in December is also studied in the ERA-Interim data. These results are consistent with the view that the MJO’s moist static energy anomalies grow and are sustained to a significant extent by the radiative feedbacks associated with MJO water vapor and cloud anomalies and that propagation of the MJO is associated with advection of moist static energy. Both horizontal and vertical advection appear to play significant roles in the events studied here. Horizontal advection strongly moistens the atmosphere during the buildup to the active phase of the October event when the low-level winds switch from westerly to easterly. Horizontal advection strongly dries the atmosphere in the wake of the active phases of the November and December events as the westerlies associated with off-equatorial cyclonic gyres bring subtropical dry air into the convective region from the west and north. Vertical advection provides relative moistening ahead of the active phase and drying behind it, associated with an increase of the normalized gross moist stability.


2013 ◽  
Vol 70 (1) ◽  
pp. 187-192 ◽  
Author(s):  
Adam Sobel ◽  
Eric Maloney

Abstract The authors discuss modifications to a simple linear model of intraseasonal moisture modes. Wind–evaporation feedbacks were shown in an earlier study to induce westward propagation in an eastward mean low-level flow in this model. Here additional processes, which provide effective sources of moist static energy to the disturbances and which also depend on the low-level wind, are considered. Several processes can act as positive sources in perturbation easterlies: zonal advection (if the mean zonal moisture gradient is eastward), modulation of synoptic eddy drying by the MJO-scale wind perturbations, and frictional convergence. If the sum of these is stronger than the wind–evaporation feedback—as observations suggest may be the case, though with considerable uncertainty—the model produces unstable modes that propagate weakly eastward relative to the mean flow. With a small amount of horizontal diffusion or other scale-selective damping, the growth rate is greatest at the largest horizontal scales and decreases monotonically with wavenumber.


2016 ◽  
Vol 73 (2) ◽  
pp. 743-759 ◽  
Author(s):  
Yukari Sumi ◽  
Hirohiko Masunaga

Abstract A moist static energy (MSE) budget analysis is applied to quasi-2-day waves to examine the effects of thermodynamic processes on the wave propagation mechanism. The 2-day waves are defined as westward inertia–gravity (WIG) modes identified with filtered geostationary infrared measurements, and the thermodynamic parameters and MSE budget variables computed from reanalysis data are composited with respect to the WIG peaks. The composite horizontal and vertical MSE structures are overall as theoretically expected from WIG wave dynamics. A prominent horizontal MSE advection is found to exist, although the wave dynamics is mainly regulated by vertical advection. The vertical advection decreases MSE around the times of the convective peak, plausibly resulting from the first baroclinic mode associated with deep convection. Normalized gross moist stability (NGMS) is used to examine the thermodynamic processes involving the large-scale dynamics and convective heating. NGMS gradually decreases to zero before deep convection and reaches a maximum after the convection peak, where low (high) NGMS leads (lags) deep convection. The decrease in NGMS toward zero before the occurrence of active convection suggests an increasingly efficient conversion from convective heating to large-scale dynamics as the wave comes in, while the increase afterward signifies that this linkage swiftly dies out after the peak.


Sign in / Sign up

Export Citation Format

Share Document