scholarly journals A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection

2006 ◽  
Vol 63 (7) ◽  
pp. 1895-1909 ◽  
Author(s):  
Zhiming Kuang ◽  
Christopher S. Bretherton

Abstract In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.

2010 ◽  
Vol 67 (7) ◽  
pp. 2171-2193 ◽  
Author(s):  
Minoru Chikira ◽  
Masahiro Sugiyama

Abstract A new cumulus parameterization is developed for which an entraining plume model is adopted. The lateral entrainment rate varies vertically depending on the surrounding environment. Two different formulations are examined for the rate. The cumulus ensemble is spectrally represented according to the updraft velocity at cloud base. Cloud-base mass flux is determined with prognostic convective kinetic energy closure. The entrainment rate tends to be large near cloud base because of the small updraft velocity near that level. Deep convection tends to be suppressed when convective available potential energy is small because of upward reduction of in-cloud moist static energy. Dry environmental air significantly reduces in-cloud humidity mainly because of the large entrainment rate in the lower troposphere, which leads to suppression of deep convection, consistent with observations and previous results of cloud-resolving models. The change in entrainment rate has the potential to influence cumulus convection through many feedbacks. The results of an atmospheric general circulation model are improved in both climatology and variability. A representation of the South Pacific convergence zone and the double intertropical convergence zone is improved. The moist Kelvin waves are represented without empirical triggering schemes with a reasonable equivalent depth. A spectral analysis shows a strong signal of the Madden–Julian oscillation. The scheme provides new insights and better understanding of the interaction between cumuli and the surrounding environment.


2017 ◽  
Vol 32 (5) ◽  
pp. 2005-2017 ◽  
Author(s):  
Jongil Han ◽  
Weiguo Wang ◽  
Young C. Kwon ◽  
Song-You Hong ◽  
Vijay Tallapragada ◽  
...  

Abstract The current operational NCEP Global Forecast System (GFS) cumulus convection schemes are updated with a scale-aware parameterization where the cloud mass flux decreases with increasing grid resolution. The ratio of advective time to convective turnover time is also taken into account for the scale-aware parameterization. In addition, the present deep cumulus convection closure using the quasi-equilibrium assumption is no longer used for grid sizes smaller than a threshold value. For the shallow cumulus convection scheme, the cloud-base mass flux is modified to be given by a function of mean updraft velocity. A simple aerosol-aware parameterization where rain conversion in the convective updraft is modified by aerosol number concentration is also included in the update. Along with the scale- and aerosol-aware parameterizations, more changes are made to the schemes. The cloud-base mass-flux computation in the deep convection scheme is modified to use convective turnover time as the convective adjustment time scale. The rain conversion rate is modified to decrease with decreasing air temperature above the freezing level. Convective inhibition in the subcloud layer is used as an additional trigger condition. Convective cloudiness is enhanced by considering suspended cloud condensate in the updraft. The lateral entrainment in the deep convection scheme is also enhanced to more strongly suppress convection in a drier environment. The updated NCEP GFS cumulus convection schemes display significant improvements especially in the summertime continental U.S. precipitation forecasts.


2010 ◽  
Vol 67 (7) ◽  
pp. 2212-2225 ◽  
Author(s):  
Jennifer K. Fletcher ◽  
Christopher S. Bretherton

Abstract High-resolution three-dimensional cloud resolving model simulations of deep cumulus convection under a wide range of large-scale forcings are used to evaluate a mass flux closure based on boundary layer convective inhibition (CIN) that has previously been applied in parameterizations of shallow cumulus convection. With minor modifications, it is also found to perform well for deep oceanic and continental cumulus convection, and it matches simulated cloud-base mass flux much better than a closure based only on the boundary layer convective velocity scale. CIN closure maintains an important feedback among cumulus base mass flux, compensating subsidence, and CIN that keeps the boundary layer top close to cloud base. For deep convection, the proposed CIN closure requires prediction of a boundary layer mean turbulent kinetic energy (TKE) and a horizontal moisture variance, both of which are strongly correlated with precipitation. For our cases, CIN closure predicts cloud-base mass flux in deep convective environments as well as the best possible bulk entraining CAPE closure, but unlike the latter, CIN closure also works well for shallow cumulus convection without retuning of parameters.


2005 ◽  
Vol 133 (11) ◽  
pp. 3315-3334 ◽  
Author(s):  
James A. Ridout ◽  
Yi Jin ◽  
Chi-Sann Liou

Abstract A quasi balance with respect to parcel buoyancy at cloud base between destabilizing processes and convection is imposed as a constraint on convective cloud-base mass flux in a modified version of the Kain–Fritsch cumulus parameterization. Supporting evidence is presented for this treatment, showing a cloud-base quasi balance (CBQ) on a time scale of approximately 1–3 h in explicit simulations of deep convection over the U.S. Great Plains and over the tropical Pacific Ocean with the Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS).1 With the exception of the smaller of two convective events in the Great Plains simulation, a CBQ is still observed upon restriction of the data analysis to instances where the available buoyant energy (ABE) exceeds a threshold value of 1000 J kg−1. This observation is consistent with the view that feedbacks between convection and cloud-base parcel buoyancy can control the rate of convection on shorter time scales than those associated with the elimination of buoyant energy and supports the addition of a CBQ constraint to the Kain–Fritsch mass-flux closure. Tests of the modified Kain–Fritsch scheme in single-column-model simulations based on the explicit three-dimensional simulations show a significant improvement in the representation of the main convective episodes, with a greater amount of convective rainfall. The performance of the scheme in COAMPS precipitation forecast experiments over the continental United States is also investigated. Improvements are obtained with the modified scheme in skill scores for middle to high rainfall rates.


2019 ◽  
Vol 147 (6) ◽  
pp. 2283-2306 ◽  
Author(s):  
Mateusz Taszarek ◽  
Natalia Pilguj ◽  
Juliusz Orlikowski ◽  
Artur Surowiecki ◽  
Szymon Walczakiewicz ◽  
...  

Abstract This study documents atmospheric conditions, development, and evolution of a severe weather outbreak that occurred on 11 August 2017 in Poland. The emphasis is on analyzing system morphology and highlighting the importance of a mesovortex in producing the most significant wind damages. A derecho-producing mesoscale convective system (MCS) had a remarkable intensity and was one of the most impactful convective storms in the history of Poland. It destroyed and partially damaged 79 700 ha of forest (9.8 million m3 of wood), 6 people lost their lives, and 58 were injured. The MCS developed in an environment of high 0–3-km wind shear (20–25 m s−1), strong 0–3-km storm relative helicity (200–600 m2 s−2), moderate most-unstable convective available potential energy (1000–2500 J kg−1), and high precipitable water (40–46 mm). Within the support of a midtropospheric jet, the MCS moved northeast with a simultaneous northeastward inflow of warm and very moist air, which contributed to strong downdrafts. A mesocyclone embedded in the convective line induced the rear inflow jet (RIJ) to descend and develop a bow echo. In the mature stage, a supercell evolved into a bookend vortex and later into a mesoscale convective vortex. Swaths of the most significant wind damage followed the aforementioned vortex features. A high-resolution simulation performed with initial conditions derived from GFS and ECMWF global models predicted the possibility of a linear MCS with widespread damaging wind gusts and embedded supercells. Simulations highlighted the importance of cloud cover in the preconvective environment, which influenced the placement and propagation of the resulting MCS.


2008 ◽  
Vol 65 (1) ◽  
pp. 87-105 ◽  
Author(s):  
R. S. Plant ◽  
G. C. Craig

Abstract A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (PDF) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the PDF is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain–Fritsch parameterization. Initial tests in the single-column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.


2004 ◽  
Vol 61 (23) ◽  
pp. 2797-2816 ◽  
Author(s):  
Shu-Hua Chen ◽  
Wen-Yih Sun

Abstract An explicit one-dimensional time-dependent tilting cloud model has been developed for use in cumulus parameterizations. The tilting axis is not necessarily orthogonal to the (r, θ) plane, making the horizontal axisymmetric assumption more reasonable. This explicit time-dependent tilting model (ETTM) consists of an updraft and a downdraft, which are governed by the same dynamic and thermodynamic equations. The updraft is initiated by a moist thermal bubble, while the downdraft is consequently induced by evaporative cooling and the drag force of precipitation separating from the tilting updraft instead of being arbitrarily initialized. The updraft is capable of reproducing the major features of a deep cloud such as overshooting cooling above the cloud top, evaporative cooling near the surface, and drying in the lower atmosphere at dissipating stages. The entrainment–detrainment rate in this model is well defined, and its time variation is quite significant. Moreover, the vertical profile of the air inside the updraft does not follow the moist adiabat after deep convection. For the downdraft, the total precipitation and mass flux at low levels contributed from the downdraft cannot be neglected in this case study. In addition, the downdraft can bring dry air from middle levels to lower levels. Three sensitivity tests—the environmental sounding, the tilting angle, and the radius of the updraft–downdraft— have also been conducted. The cooling–warming of a downdraft near the surface is sensitive to the environmental sounding, consistent with results from Srivastava. The cloud life span, maximum vertical velocity, precipitation amount, and vertical mass flux are strongly influenced by the tilting angle and the radius of the cloud. The results from the ETTM simulation are quite reasonable and promising. However, some deficiencies of this model still exist, and more research will be conducted to improve its performance. The final goal is to implement this 1D model in a mesoscale model's cumulus parameterization scheme.


2013 ◽  
Vol 141 (3) ◽  
pp. 1061-1078 ◽  
Author(s):  
Xin Zhou ◽  
Bart Geerts

Abstract Data collected around the Santa Catalina Mountains in Arizona as part of the Cumulus Photogrammetric, In Situ and Doppler Observations (CuPIDO) experiment during the 2006 summer monsoon season are used to investigate the effect of soil moisture on the surface energy balance, boundary layer (BL) characteristics, thermally forced orographic circulations, and orographic cumulus convection. An unusual wet spell allows separation of the two-month campaign in a wet and a dry soil period. Days in the wet soil period tend to have a higher surface latent heat flux, lower soil and air temperatures, a more stable and shallower BL, and weaker solenoidal forcing resulting in weaker anabatic flow, in comparison with days in the dry soil period. The wet soil period is also characterized by higher humidity and moist static energy in the BL, implying a lower cumulus cloud base and higher convective available potential energy. Therefore, this period witnesses rather early growth of orographic cumulus convection, growing rapidly to the cumulonimbus stage, often before noon, and producing precipitation rather efficiently, with relatively little lightning. Data alone do not allow discrimination between soil moisture and advected airmass characteristics in explaining these differences. Hence, the need for a numerical sensitivity experiment, in Part II of this study.


2004 ◽  
Vol 132 (11) ◽  
pp. 2525-2538 ◽  
Author(s):  
R. A. J. Neggers ◽  
A. P. Siebesma ◽  
G. Lenderink ◽  
A. A. M. Holtslag

Abstract Three closure methods for the mass flux at cloud base in shallow cumulus convection are critically examined for the difficult case of a diurnal cycle over land. The closure methods are first evaluated against large-eddy simulations (LESs) by diagnosing all parameters appearing in the closure equations during simulations of two different observed diurnal cycles of shallow cumulus. This reveals the characteristic behavior of each closure mechanism purely as a result of its core structure. With these results in hand the impact of each closure on the development of the cloudy boundary layer is then studied by its implementation in an offline single-column model of a regional atmospheric climate model. The LES results show that the boundary layer quasi-equilibrium closure typically overestimates the cloud-base mass flux after cloud onset, due to the neglect of significant moisture and temperature tendencies in the subcloud layer. The convective available potential energy (CAPE) adjustment closure is compromised by its limitation to compensating subsidence as the only CAPE breakdown mechanism and the use of a constant adjustment time scale. The closure method using the subcloud convective vertical velocity scale gives the best results, as it catches the time development of the cloud-base mass flux as diagnosed in LES.


2018 ◽  
Vol 75 (5) ◽  
pp. 1587-1608 ◽  
Author(s):  
Fiaz Ahmed ◽  
J. David Neelin

The tropical precipitation–moisture relationship, characterized by rapid increases in precipitation for modest increases in moisture, is conceptually recast in a framework relevant to plume buoyancy and conditional instability in the tropics. The working hypothesis in this framework links the rapid onset of precipitation to integrated buoyancy in the lower troposphere. An analytical expression that relates the buoyancy of an entraining plume to the vertical thermodynamic structure is derived. The natural variables in this framework are saturation and subsaturation equivalent potential temperatures, which capture the leading-order temperature and moisture variations, respectively. The use of layer averages simplifies the analytical and subsequent numerical treatment. Three distinct layers, the boundary layer, the lower free troposphere, and the midtroposphere, adequately capture the vertical variations in the thermodynamic structure. The influence of each environmental layer on the plume is assumed to occur via lateral entrainment, corresponding to an assumed mass-flux profile. The fractional contribution of each layer to the midlevel plume buoyancy (i.e., the layer weight) is estimated from TRMM 3B42 precipitation and ERA-Interim thermodynamic profiles. The layer weights are used to “reverse engineer” a deep-inflow mass-flux profile that is nominally descriptive of the tropical atmosphere through the onset of deep convection. The layer weights—which are nearly the same for each of the layers—constitute an environmental influence function and are also used to compute a free-tropospheric integrated buoyancy measure. This measure is shown to be an effective predictor of onset in conditionally averaged precipitation across the global tropics—over both land and ocean.


Sign in / Sign up

Export Citation Format

Share Document