Intraseasonal Variability of the Zonal-Mean Extratropical Tropopause Height

2007 ◽  
Vol 64 (2) ◽  
pp. 608-620 ◽  
Author(s):  
Seok-Woo Son ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract The physical processes that drive the fluctuations of the extratropical tropopause height are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. A composite zonal-mean heat budget analysis for the Northern Hemisphere winter shows that fluctuations in the extratropical tropopause height result not only from a warming of the troposphere but also from an even stronger cooling of the lower stratosphere. While the tropospheric warming is caused by a poleward eddy heat transport associated with baroclinic eddies, the stratospheric cooling is driven primarily by planetary-scale waves. The results from analyses of synoptic- and planetary-scale eddy kinetic energy and Eliassen–Palm fluxes are consistent with the planetary waves first gaining their energy within the troposphere, and then propagating vertically into the stratosphere. For the Southern Hemisphere, while lower-stratospheric temperature anomalies still play an important role for the fluctuations in the tropopause height, the temperature anomalies are accounted for primarily by a poleward eddy heat transport associated with synoptic-scale eddies, and by diabatic heating. These results indicate that, although the height of the extratropical tropopause is modulated by baroclinic eddies, which is consistent with existing theories, the amount of the modulation is highly influenced by stratospheric processes.

2010 ◽  
Vol 67 (8) ◽  
pp. 2582-2600 ◽  
Author(s):  
Thomas Birner

Abstract The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied using a comprehensive chemistry–climate model (CCM), reanalysis data, and simple idealized modeling. Dynamical forcing of static stability as associated with the vertical structure of the residual circulation results in a dominant dipole forcing structure with negative static stability forcing just below the tropopause and positive static stability forcing just above the tropopause. This dipole forcing structure effectively sharpens the tropopause, especially during winter. Furthermore, the strong positive lowermost stratospheric static stability forcing causes a layer of strongly enhanced static stability just above the extratropical tropopause—a tropopause inversion layer (TIL)—especially in the winter midlatitudes. The strong positive static stability forcing is shown to be mainly due to the strong vertical gradient of the vertical residual velocity found just above the tropopause in the winter midlatitudes. Stratospheric radiative equilibrium (SRE) solutions are obtained using offline radiative transfer calculations for a given tropospheric climate as simulated by the CCM. The resulting tropopause height in SRE is reduced by several kilometers in the tropics but is increased by 1–2 km in the extratropics, strongly reducing the equator-to-pole contrast in tropopause height. Moreover, the TIL in winter midlatitudes disappears in the SRE solution in contrast to the polar summer TIL, which stays intact. When the SRE solution is modified to include the effect of stratospheric dynamics as represented by the stratospheric residual circulation, the TIL in winter midlatitudes is recovered, suggesting that the static stability forcing associated with the stratospheric residual circulation represents the main cause for the TIL in the winter midlatitudes whereas radiation seems dominant in causing the polar summer TIL.


2007 ◽  
Vol 20 (13) ◽  
pp. 2881-2894 ◽  
Author(s):  
Tomoki Tozuka ◽  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Toshio Yamagata

Abstract The decadal variation in the tropical Indian Ocean is investigated using outputs from a 200-yr integration of the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) ocean–atmosphere coupled model. The first EOF mode of the decadal bandpass- (9–35 yr) filtered sea surface temperature anomaly (SSTA) represents a basinwide mode and is closely related with the Pacific ENSO-like decadal variability. The second EOF mode shows a clear east–west SSTA dipole pattern similar to that of the interannual Indian Ocean dipole (IOD) and may be termed the decadal IOD. However, it is demonstrated that the decadal air–sea interaction in the Tropics can be a statistical artifact; it should be interpreted more correctly as decadal modulation of interannual IOD events (i.e., asymmetric or skewed occurrence of positive and negative events). Heat budget analysis has revealed that the occurrence of IOD events is governed by variations in the southward Ekman heat transport across 15°S and variations in the Indonesian Throughflow associated with the ENSO. The variations in the southward Ekman heat transport are related to the Mascarene high activities.


2013 ◽  
Vol 26 (4) ◽  
pp. 1211-1229 ◽  
Author(s):  
Lu Wang ◽  
Tim Li ◽  
Tianjun Zhou ◽  
Xinyao Rong

Abstract The spatial structure and temporal evolution of the intraseasonal oscillation (ISO) in boreal summer over the midlatitude North Pacific Ocean are investigated, through the diagnosis of NCEP reanalysis data. It is found that the midlatitude ISO has an equivalent-barotropic structure, with maximum amplitude at 250 hPa. Initiated near 120°W, the ISO perturbation propagates westward at a phase speed of about 2.4 m s−1 and reaches a maximum amplitude at 150°W. A diagnosis of barotropic energy conversion shows that the ISO gains energy from the summer mean flow in the ISO activity region. A center-followed column-averaged vorticity budget analysis shows that the nonlinear eddy meridional vorticity transport plays a major role in the growth of the ISO perturbation. There is a two-way interaction between ISO flows and synoptic eddies. While a cyclonic (anticyclonic) ISO flow causes synoptic-scale eddies to tilt toward the northwest–southeast (northeast–southwest) direction, the tilted synoptic eddies then exert a positive feedback to reinforce the ISO cyclonic (anticyclonic) flow through eddy vorticity transport. The reanalysis data and numerical simulations show that the midlatitude ISO is primarily driven by local processes and the tropical forcing accounts for about 20% of total intraseasonal variability in midlatitudes. However, 20% might be an underestimate given that the tropical intraseasonal forcing is not fully included in the current observational analysis and modeling experiment.


2017 ◽  
Vol 47 (6) ◽  
pp. 1347-1365 ◽  
Author(s):  
Tomomichi Ogata ◽  
Motoki Nagura ◽  
Yukio Masumoto

AbstractA possible formation mechanism of mean subsurface upwelling along the equator in the Indian Ocean is investigated using a series of hierarchical ocean general circulation model (OGCM) integrations and analytical considerations. In an eddy-resolving OGCM with realistic forcing, mean vertical velocity in the tropical Indian Ocean shows rather strong upwelling, with its maximum on the equator in the subsurface layer below the thermocline. Heat budget analysis exhibits that horizontal and vertical heat advection by deviations (i.e., due to deviations of velocity and temperature from the mean) balances with vertical advection caused by mean equatorial upwelling. Horizontal heat advection is mostly associated with intraseasonal variability with periods of 3–91 days, while contributions from longer periods (>91 days) are small. Sensitivity experiments with a coarse-resolution OGCM further demonstrate that such mean equatorial upwelling cannot be reproduced by seasonal forcing only. Adding the intraseasonal wind forcing, especially meridional wind variability with a period of 15 days, generates significant mean subsurface upwelling on the equator. Further experiments with idealized settings confirm the importance of intraseasonal mixed Rossby–gravity (MRG) waves to generate mean upwelling, which appears along the energy “beam” of the MRG wave. An analytical solution of the MRG waves indicates that wave-induced temperature advection caused by the MRG waves with upward (downward) phase propagation results in warming (cooling) on the equator. This wave-induced warming (cooling) is shown to balance with the mean equatorial upwelling (downwelling), which is consistent with simulated characteristics in the OGCM experiments.


2020 ◽  
Vol 33 (5) ◽  
pp. 1619-1641 ◽  
Author(s):  
Jie Feng ◽  
Tao Lian ◽  
Jun Ying ◽  
Junde Li ◽  
Gen Li

AbstractWhether the state-of-the-art CMIP5 models have different El Niño types and how the degree of modeled El Niño diversity would be impacted by the future global warming are still heavily debated. In this study, cluster analysis is used to investigate El Niño diversity in 30 CMIP5 models. As the method does not rely on any prior knowledge of the patterns of El Niño seen in observations, it provides a practical way to identify the degree of El Niño diversity in models. Under the historical scenario, most models show a poor degree of El Niño diversity in their own model world, primarily due to the lopsided numbers of events belonging to the two modeled El Niño types and the weak compactness of events in each cluster. Four models are found showing significant El Niño diversity, yet none of them captures the longitudinal distributions of the warming centers of the two El Niño types seen in the observations. Heat budget analysis of the sea surface temperature (SST) anomaly suggests that the degree of modeled El Niño diversity is highly related to the climatological zonal SST gradient over the western-central equatorial Pacific in models. As the gradient is weakened in most models under the future high-emission scenario, the degree of modeled El Niño diversity is further reduced in the future. The results indicate that a better simulation of the SST gradient over the western-central equatorial Pacific might allow a more reliable simulation/projection of El Niño diversity in most CMIP5 models.


2014 ◽  
Vol 28 (1) ◽  
pp. 66-85 ◽  
Author(s):  
Chung-Chieh Wang ◽  
Bo-Xun Lin ◽  
Cheng-Ta Chen ◽  
Shih-How Lo

Abstract To quantify the effects of long-term climate change on typhoon rainfall near Taiwan, cloud-resolving simulations of Typhoon (TY) Sinlaku and TY Jangmi, both in September 2008, are performed and compared with sensitivity tests where these same typhoons are placed in the climate background of 1950–69, which is slightly cooler and drier compared to the modern climate of 1990–2009 computed using NCEP–NCAR reanalysis data. Using this strategy, largely consistent responses are found in the model although only two cases are studied. In control experiments, both modern-day typhoons yield more rainfall than their counterpart in the sensitivity test using past climate, by about 5%–6% at 200–500 km from the center for Sinlaku and roughly 4%–7% within 300 km of Jangmi, throughout much of the periods simulated. In both cases, the frequency of more-intense rainfall (20 to >50 mm h−1) also increases by about 5%–25% and the increase tends to be larger toward higher rain rates. Results from the water budget analysis, again quite consistent between the two cases, indicate that the increased rainfall from the typhoons in the modern climate is attributable to both a moister environment (by 2.5%–4%) as well as, on average, a more active secondary circulation of the storm. Thus, a changing climate may already have had a discernible impact on TC rainfall near Taiwan. While an overall increase in TC rainfall of roughly 5% may not seem large, it is certainly not insignificant considering that the long-term trend observed in the past 40–50 yr, whatever the causes might be, may continue for many decades in the foreseeable future.


2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


Sign in / Sign up

Export Citation Format

Share Document