scholarly journals Optimal Perturbations in Quasigeostrophic Turbulence

2007 ◽  
Vol 64 (4) ◽  
pp. 1350-1364 ◽  
Author(s):  
Timothy DelSole

Abstract This paper tests the hypothesis that optimal perturbations in quasigeostrophic turbulence are excited sufficiently strongly and frequently to account for the energy-containing eddies. Optimal perturbations are defined here as singular vectors of the propagator, for the energy norm, corresponding to the equations of motion linearized about the time-mean flow. The initial conditions are drawn from a numerical solution of the nonlinear equations associated with the linear propagator. Experiments confirm that energy is concentrated in the leading evolved singular vectors, and that the average energy in the initial singular vectors is within an order of magnitude of that required to explain the average energy in the evolved singular vectors. Furthermore, only a small number of evolved singular vectors (4 out of 4000) are needed to explain the dominant eddy structure when total energy exceeds a predefined threshold. The initial singular vectors explain only 10% of such events, but this discrepancy was similar to that of the full propagator, suggesting that it arises primarily due to errors in the propagator. In the limit of short lead times, energy conservation can be expressed in terms of suitable singular vectors to constrain the energy distribution of the singular vectors in statistically steady equilibrium. This and other connections between linear optimals and nonlinear dynamics suggests that the positive results found here should carry over to other systems, provided the propagator and initial states are chosen consistently with respect to the nonlinear system.

2019 ◽  
Vol 76 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
Fuqing Zhang ◽  
Y. Qiang Sun ◽  
Linus Magnusson ◽  
Roberto Buizza ◽  
Shian-Jiann Lin ◽  
...  

Abstract Understanding the predictability limit of day-to-day weather phenomena such as midlatitude winter storms and summer monsoonal rainstorms is crucial to numerical weather prediction (NWP). This predictability limit is studied using unprecedented high-resolution global models with ensemble experiments of the European Centre for Medium-Range Weather Forecasts (ECMWF; 9-km operational model) and identical-twin experiments of the U.S. Next-Generation Global Prediction System (NGGPS; 3 km). Results suggest that the predictability limit for midlatitude weather may indeed exist and is intrinsic to the underlying dynamical system and instabilities even if the forecast model and the initial conditions are nearly perfect. Currently, a skillful forecast lead time of midlatitude instantaneous weather is around 10 days, which serves as the practical predictability limit. Reducing the current-day initial-condition uncertainty by an order of magnitude extends the deterministic forecast lead times of day-to-day weather by up to 5 days, with much less scope for improving prediction of small-scale phenomena like thunderstorms. Achieving this additional predictability limit can have enormous socioeconomic benefits but requires coordinated efforts by the entire community to design better numerical weather models, to improve observations, and to make better use of observations with advanced data assimilation and computing techniques.


2004 ◽  
Vol 127 (3) ◽  
pp. 493-498 ◽  
Author(s):  
B. J. Alshaer ◽  
H. Nagarajan ◽  
H. K. Beheshti ◽  
H. M. Lankarani ◽  
S. Shivaswamy

Clearances exist in different kinds of joints in multibody mechanical systems, which could drastically affect the dynamic behavior of the system. If the joint is dry with no lubricant, impact occurs, resulting in wear and tear of the joint. In practical engineering design of machines, joints are usually designed to operate with some lubricant. Lubricated journal bearings are designed so that even when the maximum load is applied, the joint surfaces do not come into contact with each other. In this paper, a general methodology for modeling lubricated long journal bearings in multibody mechanical systems is presented. This modeling utilizes a method of solving for the forces produced by the lubricant in a dynamically loaded long journal bearing. A perfect revolute joint in a multibody mechanical system imposes kinematic constraints, while a lubricated journal bearing joint imposes force constraints. As an application, the dynamic response of a slider-crank mechanism including a lubricated journal bearing joint between the connecting rod and the slider is considered and analyzed. The dynamic response is obtained by numerically solving the constraint equations and the forces produced by the lubricant simultaneously with the differential equations of motion and a set of initial conditions numerically. The results are compared with the previous studies performed on the same mechanism as well a dry clearance joint. It is shown that in a multibody mechanical system, the journal bearing lubricant introduces damping and stiffness to the system. The earlier studies predict that the order of magnitude of the reaction moment is twice that of a perfect revolute joint. The proposed model predicts that the reaction moment is within the same order of magnitude of the perfect joint simulation case.


Author(s):  
B. J. Alshaer ◽  
H. M. Lankarani ◽  
S. Shivaswamy

Abstract Clearances exist in different kinds of joints in multibody mechanical systems, which could drastically affect the dynamic behavior of the system. If the joint is dry with no lubricant, impact occurs, resulting in wear and tear of the joint. In practical engineering design of machines, joints are usually designed to operate with some lubricant. Lubricated journal bearings are designed so that even when the maximum load is applied, the joint surfaces do not come into contact with each other. In this paper, a general methodology for modeling lubricated long journal bearings in multibody mechanical systems is presented. This modeling utilizes a new method of solving for the forces produced by the lubricant in a dynamically loaded long journal bearing. A perfect revolute joint in a multibody mechanical system imposes kinematic constraints, while a lubricated journal bearing joint imposes force constraints. As an application, the dynamic response of a crank-slider mechanism including a lubricated journal bearing joint between the connecting rod and the slider is considered and analyzed. The dynamic response is obtained by numerically solving the constraint equations and the forces produced by the lubricant simultaneously with the differential equations of motion and a set of initial conditions numerically. The results are compared with the previous studies performed on the same mechanism as well a dry clearance joint. It is shown that in a multibody mechanical system, the journal bearing lubricant introduces damping and stiffness to the system. The earlier studies previous predict that the order of magnitude of the reaction moment is twice that of a perfect revolute joint. The proposed model predicts that the reaction moment is within the same order of magnitude of the perfect joint simulation case.


1987 ◽  
Vol 52 (8) ◽  
pp. 1888-1904
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

A theoretical model is described of the mean two-dimensional flow of homogeneous charge in a flat-bottomed cylindrical tank with radial baffles and six-blade turbine disc impeller. The model starts from the concept of vorticity transport in the bulk of vortex liquid flow through the mechanism of eddy diffusion characterized by a constant value of turbulent (eddy) viscosity. The result of solution of the equation which is analogous to the Stokes simplification of equations of motion for creeping flow is the description of field of the stream function and of the axial and radial velocity components of mean flow in the whole charge. The results of modelling are compared with the experimental and theoretical data published by different authors, a good qualitative and quantitative agreement being stated. Advantage of the model proposed is a very simple schematization of the system volume necessary to introduce the boundary conditions (only the parts above the impeller plane of symmetry and below it are distinguished), the explicit character of the model with respect to the model parameters (model lucidity, low demands on the capacity of computer), and, in the end, the possibility to modify the given model by changing boundary conditions even for another agitating set-up with radially-axial character of flow.


2021 ◽  
Vol 217 (3) ◽  
Author(s):  
E. M. Rossi ◽  
N. C. Stone ◽  
J. A. P. Law-Smith ◽  
M. Macleod ◽  
G. Lodato ◽  
...  

AbstractTidal disruption events (TDEs) are among the brightest transients in the optical, ultraviolet, and X-ray sky. These flares are set into motion when a star is torn apart by the tidal field of a massive black hole, triggering a chain of events which is – so far – incompletely understood. However, the disruption process has been studied extensively for almost half a century, and unlike the later stages of a TDE, our understanding of the disruption itself is reasonably well converged. In this Chapter, we review both analytical and numerical models for stellar tidal disruption. Starting with relatively simple, order-of-magnitude physics, we review models of increasing sophistication, the semi-analytic “affine formalism,” hydrodynamic simulations of the disruption of polytropic stars, and the most recent hydrodynamic results concerning the disruption of realistic stellar models. Our review surveys the immediate aftermath of disruption in both typical and more unusual TDEs, exploring how the fate of the tidal debris changes if one considers non-main sequence stars, deeply penetrating tidal encounters, binary star systems, and sub-parabolic orbits. The stellar tidal disruption process provides the initial conditions needed to model the formation of accretion flows around quiescent massive black holes, and in some cases may also lead to directly observable emission, for example via shock breakout, gravitational waves or runaway nuclear fusion in deeply plunging TDEs.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Vivian Martins Gomes ◽  
Antonio Fernando Bertachini de Almeida Prado ◽  
Justyna Golebiewska

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.


2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


Author(s):  
Renan F. Corrêa ◽  
Flávio D. Marques

Abstract Aeroelastic systems have nonlinearities that provide a wide variety of complex dynamic behaviors. Nonlinear effects can be avoided in practical applications, as in instability suppression or desired, for instance, in the energy harvesting design. In the technical literature, there are surveys on nonlinear aeroelastic systems and the different manners they manifest. More recently, the bistable spring effect has been studied as an acceptable nonlinear behavior applied to mechanical vibration problems. The application of the bistable spring effect to aeroelastic problems is still not explored thoroughly. This paper contributes to analyzing the nonlinear dynamics of a typical airfoil section mounted on bistable spring support at plunging motion. The equations of motion are based on the typical aeroelastic section model with three degrees-of-freedom. Moreover, a hardening nonlinearity in pitch is also considered. A preliminary analysis of the bistable spring geometry’s influence in its restoring force and the elastic potential energy is performed. The response of the system is investigated for a set of geometrical configurations. It is possible to identify post-flutter motion regions, the so-called intrawell, and interwell. Results reveal that the transition between intrawell to interwell regions occurs smoothly, depending on the initial conditions. The bistable effect on the aeroelastic system can be advantageous in energy extraction problems due to the jump in oscillation amplitudes. Furthermore, the hardening effect in pitching motion reduces the limit cycle oscillation amplitudes and also delays the occurrence of the snap-through.


1992 ◽  
Vol 152 ◽  
pp. 145-152 ◽  
Author(s):  
R. Dvorak

In this article we present a numerical study of the motion of asteroids in the 2:1 and 3:1 resonance with Jupiter. We integrated the equations of motion of the elliptic restricted 3-body problem for a great number of initial conditions within this 2 resonances for a time interval of 104 periods and for special cases even longer (which corresponds in the the Sun-Jupiter system to time intervals up to 106 years). We present our results in the form of 3-dimensional diagrams (initial a versus initial e, and in the z-axes the highest value of the eccentricity during the whole integration time). In the 3:1 resonance an eccentricity higher than 0.3 can lead to a close approach to Mars and hence to an escape from the resonance. Asteroids in the 2:1 resonance with Jupiter with eccentricities higher than 0.5 suffer from possible close approaches to Jupiter itself and then again this leads in general to an escape from the resonance. In both resonances we found possible regions of escape (chaotic regions), but only for initial eccentricities e > 0.15. The comparison with recent results show quite a good agreement for the structure of the 3:1 resonance. For motions in the 2:1 resonance our numeric results are in contradiction to others: high eccentric orbits are also found which may lead to escapes and consequently to a depletion of this resonant regions.


Sign in / Sign up

Export Citation Format

Share Document