scholarly journals Improved Bias Correction Techniques for Hydrological Simulations of Climate Change*

2015 ◽  
Vol 16 (6) ◽  
pp. 2421-2442 ◽  
Author(s):  
David W. Pierce ◽  
Daniel R. Cayan ◽  
Edwin P. Maurer ◽  
John T. Abatzoglou ◽  
Katherine C. Hegewisch

Abstract Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once.

2012 ◽  
Vol 25 (3) ◽  
pp. 939-957 ◽  
Author(s):  
A. Amengual ◽  
V. Homar ◽  
R. Romero ◽  
S. Alonso ◽  
C. Ramis

Abstract Projections of climate change effects for the System of Platja de Palma (SPdP) are derived using a novel statistical technique. Socioeconomic activities developed in this settlement are very closely linked to its climate. Any planning for socioeconomic opportunities in the mid- and long term must take into account the possible effects of climate change. To this aim, daily observed series of minimum and maximum temperatures, precipitation, relative humidity, cloud cover, and wind speed have been analyzed. For the climate projections, daily data generated by an ensemble of regional climate models (RCMs) have been used. To properly use RCM data at local scale, a quantile–quantile adjustment has been applied to the simulated regional projections. The method is based on detecting changes in the cumulative distribution functions between the recent past and successive time slices of the simulated climate and applying these, after calibration, to the recent past (observed) series. Results show an overall improvement in reproducing the present climate baseline when using calibrated series instead of raw RCM outputs, although the correction does not result in such clear improvement when dealing with very extreme rainfalls. Next, the corrected series are analyzed to quantify the climate change signal. An increase of the annual means for temperatures together with a decrease for the remaining variables is projected throughout the twenty-first century. Increases in weak and intense daily rainfalls and in high extremes for daily maximum temperature can also be expected. With this information at hand, the experts planning the future of SPdP can respond more effectively to the problem of local adaptation to climate change.


2012 ◽  
Vol 12 (20) ◽  
pp. 9441-9458 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to reproduce the present-day climate adequately. The present study illustrates the impact of these uncertainties on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA for daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. The differences in average present-day concentrations between the simulations were equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentrations between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations of 5–10 μg m−3 in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased 0.5–1.0 μg m−3 in North-West Europe and the Po Valley, but these numbers are rather uncertain: overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two climate runs did not agree on the sign of the change. This illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


2012 ◽  
Vol 12 (5) ◽  
pp. 12245-12285 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to adequately reproduce the present-day climate. The present study illustrates the impact of this uncertainty on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA in daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. Differences in average concentrations for the present-day simulations were found of equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentration between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations (5–10 μg m−3) in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased (0.5–1.0 μg m−3) in North-West Europe and the Po Valley, but these numbers are rather uncertain. Overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two runs did not agree on the sign of the change. The approach taken here illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


Author(s):  
Yuchuan Lai ◽  
David A. Dzombak

AbstractAn integrated technique combining global climate model (GCM) simulation results and a statistical time series forecasting model (the autoregressive integrated moving average ARIMA model) was developed to bring together the climate change signal from GCMs to city-level historical observations as an approach to obtain location-specific temperature and precipitation projections. This approach assumes that regional temperature and precipitation time series reflect a combination of an underlying climate change signal series and a regional-deviation-from-the-signal series. An ensemble of GCMs is used to describe and provide the climate change signal, and the ARIMA model is used to model and project the regional deviation. Qualitative and quantitative assessments were conducted for evaluating the projection performance of the hybrid GCM-ARIMA (G-ARIMA) model. The results indicate that the G-ARIMA model can provide projected city-specific daily temperature and precipitation series comparable to historical observations and can have improved projection accuracy for several assessed annual indices compared to a commonly used downscaled projection product. The G-ARIMA model is subject to some limitations and uncertainties from the GCM-provided climate change signal. A notable feature of the G-ARIMA model is the efficiency with which projections can be updated when new observations become available, thus facilitating updating of regional temperature and precipitations projections. Given the increasing need for and use of location-specific climate projections in practical engineering applications, the G-ARIMA model is an option for regional temperature and precipitation projection for such applications.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


2005 ◽  
Vol 18 (23) ◽  
pp. 5011-5023 ◽  
Author(s):  
L. A. Vincent ◽  
T. C. Peterson ◽  
V. R. Barros ◽  
M. B. Marino ◽  
M. Rusticucci ◽  
...  

Abstract A workshop on enhancing climate change indices in South America was held in Maceió, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be located closer to the west and east coasts of South America.


2021 ◽  
Author(s):  
Mastawesha Misganaw Engdaw ◽  
Andrew Ballinger ◽  
Gabriele Hegerl ◽  
Andrea Steiner

<p>In this study, we aim at quantifying the contribution of different forcings to changes in temperature extremes over 1981–2020 using CMIP6 climate model simulations. We first assess the changes in extreme hot and cold temperatures defined as days below 10% and above 90% of daily minimum temperature (TN10 and TN90) and daily maximum temperature (TX10 and TX90). We compute the change in percentage of extreme days per season for October-March (ONDJFM) and April-September (AMJJAS). Spatial and temporal trends are quantified using multi-model mean of all-forcings simulations. The same indices will be computed from aerosols-, greenhouse gases- and natural-only forcing simulations. The trends estimated from all-forcings simulations are then attributed to different forcings (aerosols-, greenhouse gases-, and natural-only) by considering uncertainties not only in amplitude but also in response patterns of climate models. The new statistical approach to climate change detection and attribution method by Ribes et al. (2017) is used to quantify the contribution of human-induced climate change. Preliminary results of the attribution analysis show that anthropogenic climate change has the largest contribution to the changes in temperature extremes in different regions of the world.</p><p><strong>Keywords:</strong> climate change, temperature, extreme events, attribution, CMIP6</p><p> </p><p><strong>Acknowledgement:</strong> This work was funded by the Austrian Science Fund (FWF) under Research Grant W1256 (Doctoral Programme Climate Change: Uncertainties, Thresholds and Coping Strategies)</p>


2017 ◽  
Vol 56 (9) ◽  
pp. 2393-2409 ◽  
Author(s):  
Rick Lader ◽  
John E. Walsh ◽  
Uma S. Bhatt ◽  
Peter A. Bieniek

AbstractClimate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.


2021 ◽  
Vol 60 (4) ◽  
pp. 455-475
Author(s):  
Maike F. Holthuijzen ◽  
Brian Beckage ◽  
Patrick J. Clemins ◽  
Dave Higdon ◽  
Jonathan M. Winter

AbstractHigh-resolution, bias-corrected climate data are necessary for climate impact studies at local scales. Gridded historical data are convenient for bias correction but may contain biases resulting from interpolation. Long-term, quality-controlled station data are generally superior climatological measurements, but because the distribution of climate stations is irregular, station data are challenging to incorporate into downscaling and bias-correction approaches. Here, we compared six novel methods for constructing full-coverage, high-resolution, bias-corrected climate products using daily maximum temperature simulations from a regional climate model (RCM). Only station data were used for bias correction. We quantified performance of the six methods with the root-mean-square-error (RMSE) and Perkins skill score (PSS) and used two ANOVA models to analyze how performance varied among methods. We validated the six methods using two calibration periods of observed data (1980–89 and 1980–2014) and two testing sets of RCM data (1990–2014 and 1980–2014). RMSE for all methods varied throughout the year and was larger in cold months, whereas PSS was more consistent. Quantile-mapping bias-correction techniques substantially improved PSS, while simple linear transfer functions performed best in improving RMSE. For the 1980–89 calibration period, simple quantile-mapping techniques outperformed empirical quantile mapping (EQM) in improving PSS. When calibration and testing time periods were equivalent, EQM resulted in the largest improvements in PSS. No one method performed best in both RMSE and PSS. Our results indicate that simple quantile-mapping techniques are less prone to overfitting than EQM and are suitable for processing future climate model output, whereas EQM is ideal for bias correcting historical climate model output.


2018 ◽  
Vol 31 (16) ◽  
pp. 6591-6610 ◽  
Author(s):  
Martin Aleksandrov Ivanov ◽  
Jürg Luterbacher ◽  
Sven Kotlarski

Climate change impact research and risk assessment require accurate estimates of the climate change signal (CCS). Raw climate model data include systematic biases that affect the CCS of high-impact variables such as daily precipitation and wind speed. This paper presents a novel, general, and extensible analytical theory of the effect of these biases on the CCS of the distribution mean and quantiles. The theory reveals that misrepresented model intensities and probability of nonzero (positive) events have the potential to distort raw model CCS estimates. We test the analytical description in a challenging application of bias correction and downscaling to daily precipitation over alpine terrain, where the output of 15 regional climate models (RCMs) is reduced to local weather stations. The theoretically predicted CCS modification well approximates the modification by the bias correction method, even for the station–RCM combinations with the largest absolute modifications. These results demonstrate that the CCS modification by bias correction is a direct consequence of removing model biases. Therefore, provided that application of intensity-dependent bias correction is scientifically appropriate, the CCS modification should be a desirable effect. The analytical theory can be used as a tool to 1) detect model biases with high potential to distort the CCS and 2) efficiently generate novel, improved CCS datasets. The latter are highly relevant for the development of appropriate climate change adaptation, mitigation, and resilience strategies. Future research needs to focus on developing process-based bias corrections that depend on simulated intensities rather than preserving the raw model CCS.


Sign in / Sign up

Export Citation Format

Share Document