Marine Boundary Layer Cloud Observations in the Azores

2012 ◽  
Vol 25 (21) ◽  
pp. 7381-7398 ◽  
Author(s):  
Jasmine Rémillard ◽  
Pavlos Kollias ◽  
Edward Luke ◽  
Robert Wood

The recent deployment of the Atmospheric Radiation Measurement Program (ARM) Mobile Facility at Graciosa Island, Azores, in the context of the Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign added the most extensive (19 months) and comprehensive dataset of marine boundary layer (MBL) clouds to date. Cloud occurrence is high (60%–80%), with a summertime minimum. Liquid precipitation is frequently present (30%–40%), mainly in the form of virga. Boundary layer clouds are the most frequently observed cloud type (40%–50%) with a maximum of occurrence during the summer and fall months under the presence of anticyclonic conditions. Cumulus clouds are the most frequently occurring MBL cloud type (20%) with cumulus under stratocumulus layers (10%–30%) and single-layer stratocumulus (0%–10%) following in frequency of occurrence. A stable transition layer in the subcloud layer is commonly observed (92% of the soundings). Cumulus cloud bases and stratocumulus cloud tops correlate very well with the top of the transition layer and the inversion base, respectively. Drizzling stratocumulus layers are thicker (350–400 m) and have higher liquid water path (75–150 g m−2) than their nondrizzling counterparts (100–250 m and 30–75 g m−2, respectively). The variance of the vertical air motion is maximum near the cloud base and is higher at night. The updraft mass flux is around 0.17 kg m−2 s−1 with 40%–60% explained by coherent updraft structures. Despite a high frequency of stratocumulus clouds in the Azores, the MBL is almost never well mixed and is often cumulus coupled.

2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Salter SH ◽  

Elevated sea-surface temperatures are a necessary but not sufficient requirement for the formation of hurricanes and typhoons. This paper suggests a way to exploit this. Twomey [1] showed that cloud reflectivity depends on the size-distribution of cloud drops, with a large number of small drops reflecting more than a smaller number of larger ones. Mid-ocean air is cleaner than over land. Latham [2-4] suggested that reflectivity of marine stratocumulus clouds could be increased by releasing a submicron spray of filtered sea water into the bottom of the marine boundary layer. The salt residues left after evaporation would be mixed by turbulence through the full depth of the marine boundary layer and would be ideal cloud condensation nuclei. Those that reached a height where the air had a super-saturation above 100% by enough to get over the peak of the Köhler curve would produce an increased number of cloud drops and so trigger the Twomey effect. The increase in reflection from cloud tops back out to space would cool sea-surface water. We are not trying to increase cloud cover; we just want to make existing cloud tops whiter. The spray could be produced by wind-driven vessels cruising chosen ocean regions. The engineering design of sea-going hardware is well advanced. This paper suggests a way to calculate spray quantities and the number and cost of spray vessels to achieve a hurricane reduction to a more acceptable intensity. It is intended to show the shape of a possible calculation with credible if not exact assumptions. Anyone with better assumptions should be able to follow the process.


2013 ◽  
Vol 13 (24) ◽  
pp. 12549-12572 ◽  
Author(s):  
A. H. Berner ◽  
C. S. Bretherton ◽  
R. Wood ◽  
A. Muhlbauer

Abstract. A cloud-resolving model (CRM) coupled to a new intermediate-complexity bulk aerosol scheme is used to study aerosol–boundary-layer–cloud–precipitation interactions and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single lognormal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by clouds and rain. The CRM with the aerosol scheme is applied to a range of steadily forced cases idealized from a well-observed POC. The long-term system evolution is explored with extended two-dimensional (2-D) simulations of up to 20 days, mostly with diurnally averaged insolation and 24 km wide domains, and one 10 day three-dimensional (3-D) simulation. Both 2-D and 3-D simulations support the Baker–Charlson hypothesis of two distinct aerosol–cloud "regimes" (deep/high-aerosol/non-drizzling and shallow/low-aerosol/drizzling) that persist for days; transitions between these regimes, driven by either precipitation scavenging or aerosol entrainment from the free-troposphere (FT), occur on a timescale of ten hours. The system is analyzed using a two-dimensional phase plane with inversion height and boundary layer average aerosol concentrations as state variables; depending on the specified subsidence rate and availability of FT aerosol, these regimes are either stable equilibria or distinct legs of a slow limit cycle. The same steadily forced modeling framework is applied to the coupled development and evolution of a POC and the surrounding overcast boundary layer in a larger 192 km wide domain. An initial 50% aerosol reduction is applied to half of the model domain. This has little effect until the stratocumulus thickens enough to drizzle, at which time the low-aerosol portion transitions into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between the areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.


2009 ◽  
Vol 9 (6) ◽  
pp. 23791-23833 ◽  
Author(s):  
S. S. Lee ◽  
J. E. Penner

Abstract. This study examines the role of solar radiation in the effect of aerosols on liquid-water path (LWP) in thin, marine stratocumulus clouds with LWP of ~50 g m−2 or less by performing four sets of simulations with different solar radiation. Each set is composed of a simulation with present-day (PD) aerosols and a simulation with preindustrial (PI) aerosols. As solar radiation increases, decoupling within the marine boundary layer (MBL) becomes stronger, leading to less condensation and less LWP and thus the absence of the surface precipitation. This enables the evaporation of rain to affect the cloud-base instability. As rain evaporation increases due to more conversion of cloud liquid to rain in the PI case, the cloud-base instability increases and thus updrafts increase which leads to larger LWP in the PI case than in the PD case. In the cases with no surface precipitation, when solar radiation decreases and thus decoupling becomes weaker, rain evaporation and cloud-base instability become larger, which increases the LWP more with PI aerosols than with PD aerosols. As solar radiation decreases further, condensation and, thus, the LWP increase, which leads to the presence of the surface precipitation. This stabilizes the entire MBL and thus prevents the interactions that cause the evaporation of rain to enhance the cloud-base instability. In cases with the surface precipitation, the in-cloud interactions among cloud droplet number concentration (CDNC), supersaturation, and updrafts play an important role in the effect of aerosols on the LWP; these in-cloud interactions produce larger LWP with the PD aerosols than with the PI aerosols. In a case with lower solar radiation and with surface precipitation, weaker decoupling induces stronger in-cloud interactions, which results in larger increases in LWP with PD aerosols compared to PI aerosols than that in a case with higher solar radiation. The results of this study demonstrate that solar radiation can act as an important environmental factor by inducing a large variation in the LWP and by changing the sign of aerosol effects on the LWP of thin stratocumulus clouds. Hence, the effect of solar radiation on decoupling and thus on the feedbacks between microphysics and dynamics needs to be included in climate models for a better prediction of the effect of aerosols on clouds and thus climate.


2016 ◽  
Vol 73 (11) ◽  
pp. 4253-4268 ◽  
Author(s):  
Jianjun Liu ◽  
Zhanqing Li ◽  
Maureen Cribb

Abstract This study investigates the response of marine boundary layer (MBL) cloud properties to aerosol loading by accounting for the contributions of large-scale dynamic and thermodynamic conditions and quantifies the first indirect effect (FIE). It makes use of 19-month measurements of aerosols, clouds, and meteorology acquired during the Atmospheric Radiation Measurement Mobile Facility field campaign over the Azores. Cloud droplet number concentrations and cloud optical depth (COD) significantly increased with increasing aerosol number concentration . Cloud droplet effective radius (DER) significantly decreased with increasing . The correlations between cloud microphysical properties [, liquid water path (LWP), and DER] and were stronger under more stable conditions. The correlations between , LWP, DER, and were stronger under ascending-motion conditions, while the correlation between COD and was stronger under descending-motion conditions. The magnitude and corresponding uncertainty of the FIE ranged from 0.060 ± 0.022 to 0.101 ± 0.006 depending on the different LWP values. Under more stable conditions, cloud-base heights were generally lower than those under less stable conditions. This enabled a more effective interaction with aerosols, resulting in a larger value for the FIE. However, the dependence of the response of cloud properties to aerosol perturbations on stability varied according to whether ground- or satellite-based DER retrievals were used. The magnitude of the FIE had a larger variation with changing LWP under ascending-motion conditions and tended to be higher under ascending-motion conditions for clouds with low LWP and under descending-motion conditions for clouds with high LWP. A contrasting dependence of FIE on atmospheric stability estimated from the surface and satellite cloud properties retrievals reported in this study underscores the importance of assessing all-level properties of clouds in aerosol–cloud interaction studies.


2013 ◽  
Vol 70 (10) ◽  
pp. 3047-3062 ◽  
Author(s):  
Jennifer L. Davison ◽  
Robert M. Rauber ◽  
Larry Di Girolamo ◽  
Margaret A. LeMone

Abstract This paper examines the structure and variability of the moisture field in the tropical marine boundary layer (TMBL) as defined by Bragg scattering layers (BSLs) observed with S-band radar. Typically, four to five BSLs were present in the TMBL, including the transition layer at the top of the surface-based mixed layer. The transition-layer depth (~350 m) exhibited a weak diurnal cycle because of changes in the mixed-layer depth. BSLs and the “clear” layers between them each had a median thickness of about 350 m and a lifetime over the radar of 8.4 h, with about 25% having lifetimes longer than 20 h. More (fewer) BSLs were present when surface winds had a more southerly (northerly) component. Both BSLs and clear layers increased in depth with increasing rain rates, with the rainiest days producing layers that were about 100 m thicker than those on the driest days. The analyses imply that the relative humidity (RH) field in the TMBL exhibits layering on scales observable by radar. Satellite and wind profiler measurements show that the layered RH structure is related, at least in part, to detraining cloudy air. Based on analyses in this series of papers, a revised conceptual model of the TMBL is presented that emphasizes moisture variability and incorporates multiple moist and dry layers and a higher TMBL top. The model is supported by comparing BSL tops with satellite-derived cloud tops. This comparison suggests that the layered RH structure is related, in part, to cloud detrainment at preferred altitudes within the TMBL. The potential ramifications of this change in TMBL conceptualization on modeling of the TMBL are discussed.


2014 ◽  
Vol 71 (2) ◽  
pp. 655-664 ◽  
Author(s):  
J. J. van der Dussen ◽  
S. R. de Roode ◽  
A. P. Siebesma

Abstract The relationship between the inversion stability and the liquid water path (LWP) tendency of a vertically well-mixed, adiabatic stratocumulus cloud layer is investigated in this study through the analysis of the budget equation for the LWP. The LWP budget is mainly determined by the turbulent fluxes of heat and moisture at the top and the base of the cloud layer, as well as by the source terms due to radiation and precipitation. Through substitution of the inversion stability parameter κ into the budget equation, it immediately follows that the LWP tendency will become negative for increasing values of κ due to the entrainment of increasingly dry air. Large κ values are therefore associated with strong cloud thinning. Using the steady-state solution for the LWP, an equilibrium value κeq is formulated, beyond which the stratocumulus cloud will thin. The Second Dynamics and Chemistry of Marine Stratocumulus field study (DYCOMS-II) is used to illustrate that, depending mainly on the magnitude of the moisture flux at cloud base, stratocumulus clouds can persist well within the buoyancy reversal regime.


2020 ◽  
Vol 13 (5) ◽  
pp. 2363-2379 ◽  
Author(s):  
Katia Lamer ◽  
Pavlos Kollias ◽  
Alessandro Battaglia ◽  
Simon Preval

Abstract. Ground-based radar observations show that, over the eastern North Atlantic, 50 % of warm marine boundary layer (WMBL) hydrometeors occur below 1.2 km and have reflectivities of < −17 dBZ, thus making their detection from space susceptible to the extent of surface clutter and radar sensitivity. Surface clutter limits the ability of the CloudSat cloud profiling radar (CPR) to observe the true cloud base in ∼52 % of the cloudy columns it detects and true virga base in ∼80 %, meaning the CloudSat CPR often provides an incomplete view of even the clouds it does detect. Using forward simulations, we determine that a 250 m resolution radar would most accurately capture the boundaries of WMBL clouds and precipitation; that being said, because of sensitivity limitations, such a radar would suffer from cloud cover biases similar to those of the CloudSat CPR. Observations and forward simulations indicate that the CloudSat CPR fails to detect 29 %–43 % of the cloudy columns detected by ground-based sensors. Out of all configurations tested, the 7 dB more sensitive EarthCARE CPR performs best (only missing 9.0 % of cloudy columns) indicating that improving radar sensitivity is more important than decreasing the vertical extent of surface clutter for measuring cloud cover. However, because 50 % of WMBL systems are thinner than 400 m, they tend to be artificially stretched by long sensitive radar pulses, hence the EarthCARE CPR overestimation of cloud top height and hydrometeor fraction. Thus, it is recommended that the next generation of space-borne radars targeting WMBL science should operate interlaced pulse modes including both a highly sensitive long-pulse mode and a less sensitive but clutter-limiting short-pulse mode.


2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


2021 ◽  
Author(s):  
Bjorn Stevens ◽  
Ilya Serikov ◽  
Anna Lea Albright ◽  
Sandrine Bony ◽  
Geet George ◽  
...  

&lt;p&gt;Cloud free skies are rare in the trades. &amp;#160;We analyze conditions in which cloud-free conditions prevail. &amp;#160;For this purpose Raman water vapor measurements from the Barbados Cloud Observatory, complemented by ship-based measurements during EUREC4A are used to explore water vapor variability in the marine boundary layer. &amp;#160; We explore the consistency of the inferred cloud base height with estimates of temperature and water vapor from the lidar signal, and examine the co-variability of these quantities. &amp;#160;After having established the properties of these measurements, we seek to use them as well as others, to explain in what ways periods of cloud-free conditions are maintained, investigating the hypothesis that only when the wind stills is it simply sunny.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document