scholarly journals Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau

2013 ◽  
Vol 26 (10) ◽  
pp. 3187-3208 ◽  
Author(s):  
Fengge Su ◽  
Xiaolan Duan ◽  
Deliang Chen ◽  
Zhenchun Hao ◽  
Lan Cuo

Abstract The performance of 24 GCMs available in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) is evaluated over the eastern Tibetan Plateau (TP) by comparing the model outputs with ground observations for the period 1961–2005. The twenty-first century trends of precipitation and temperature based on the GCMs’ projections over the TP are also analyzed. The results suggest that for temperature most GCMs reasonably capture the climatological patterns and spatial variations of the observed climate. However, the majority of the models have cold biases, with a mean underestimation of 1.1°–2.5°C for the months December–May, and less than 1°C for June–October. For precipitation, the simulations of all models overestimate the observations in climatological annual means by 62.0%–183.0%, and only half of the 24 GCMs are able to reproduce the observed seasonal pattern, which demonstrates a critical need to improve precipitation-related processes in these models. All models produce a warming trend in the twenty-first century under the Representative Concentration Pathway 8.5 (rcp8.5) scenario; in contrast, the rcp2.6 scenario predicts a lower average warming rate for the near term, and a small cooling trend in the long-term period with the decreasing radiative forcing. In the near term, the projected precipitation change is about 3.2% higher than the 1961–2005 annual mean, whereas in the long term the precipitation is projected to increase 6.0% under rcp2.6 and 12.0% under the rcp8.5 scenario. Relative to the 1961–2005 mean, the annual temperature is projected to increase by 1.2°–1.3°C in the short term; the warmings under the rcp2.6 and rcp8.5 scenarios are 1.8° and 4.1°C, respectively, for the long term.

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1771 ◽  
Author(s):  
Kun Jia ◽  
Yunfeng Ruan ◽  
Yanzhao Yang ◽  
Chao Zhang

In this study, the performance of 33 Coupled Model Intercomparison Project 5 (CMIP5) global climate models (GCMs) in simulating precipitation over the Tibetan Plateau (TP) was assessed using data from 1961 to 2005 by an improved score-based method, which adopts multiple criteria to achieve a comprehensive evaluation. The future precipitation change was also estimated based on the Delta method by selecting the submultiple model ensemble (SMME) in the near-term (2006–2050) and far future (2051–2095) periods under Representative Concentration Pathways (RCP) scenarios RCP4.5 and RCP8.5. The results showed that most GCMs can reasonably simulate the precipitation pattern of an annual cycle; however, all GCMs overestimated the precipitation over TP, especially in spring and summer. The GCMs generally provide good simulations of the temporal characteristics of precipitation, while they did not perform as well in reproducing its spatial distributions. Different assessment criteria lead to inconsistent results; however, the improved rank score method, which adopts multiple criteria, provided a robust assessment of GCMs performance. The future annual precipitation was projected to increase by ~6% in the near-term with respect to the period 1961–2005, whereas increases of 12.3% and 16.7% are expected in the far future under RCP4.5 and RCP8.5 scenarios, respectively. Similar spatial distributions of future precipitation changes can be seen in the near-term and far future periods under the two scenarios, and indicate that the most predominant increases occurred in the north of TP. The results of this study are expected to provide valuable information on climate change, and for water resources and agricultural management in TP.


2019 ◽  
Author(s):  
Meixin Zhang ◽  
Chun Zhao ◽  
Zhiyuan Cong ◽  
Qiuyan Du ◽  
Mingyue Xu ◽  
...  

Abstract. Most of previous modeling studies about black carbon (BC) transport and impact over the Tibetan Plateau conducted simulations with horizontal resolutions coarser than 10 km that may not be able to resolve well the complex topography of the Himalayas. In this study, the experiments with WRF-Chem at two horizontal resolutions (20 km and 4 km) are conducted for pre-monsoon season (April, 2016) to investigate the impacts of topography on modeling the transport and distribution of BC over the TP. The simulations at both resolutions show evident accumulation of aerosols near the southern Himalayas during the pre-monsoon season, consistent with the satellite retrievals. The observed episode of high surface BC concentrations at the station near the Mt. Everest due to heavy biomass burning near the TP is well captured by the simulations. The simulations at both resolutions indicate that the prevailing up-flow across the Himalayas driven by the large-scale circulation during the daytime is the dominant transport mechanism of South Asian BC into the TP, and is much stronger than that during the nighttime. The valley wind can strengthen the prevailing up-flow transport. The simulations at coarse resolution (20 km) and fine resolution (4 km) show large differences in representing the distributions of topography of the Himalayas. The simulation at 4 km resolution resolves more valleys and thus produces much stronger transport fluxes, which indicates that although the transport of South Asian BC across the Himalayas can overcome the mountain ridges, the valley transport is more efficient and cannot be ignored. This results in 50 % higher transport flux of BC across the Himalayas and 30–40 % stronger BC radiative heating in the atmosphere over the TP from the simulation at 4 km than that at 20 km resolution. The different topography also leads to different distributions of snow cover and BC forcing in snow. This study implies that global climate models generally with even coarser resolutions than 20 km may introduce significant negative biases in estimating light absorbing aerosol radiative forcing over the TP.


2021 ◽  
pp. 1-48
Author(s):  
Daniel F. Schmidt ◽  
Kevin M. Grise

AbstractClimate change during the twenty-first century has the potential to substantially alter geographic patterns of precipitation. However, regional precipitation changes can be very difficult to project, and in some regions, global climate models do not even agree on the sign of the precipitation trend. Since some of this uncertainty is due to internal variability rather than model bias, models cannot be used to narrow the possibilities to a single outcome, but they can usefully quantify the range of plausible outcomes and identify the combination of dynamical drivers that would be likely to produce each.This study uses a storylines approach—a type of regression-based analysis—to identify some of the key dynamical drivers that explain the variance in 21st century U.S. winter precipitation trends across CMIP6 models under the SSP3-7.0 emissions scenario. This analysis shows that the spread in precipitation trends is not primarily driven by differences in modeled climate sensitivity. Key drivers include global-mean surface temperature, but also tropical upper-troposphere temperature, the El Niño-Southern Oscillation (ENSO), the Pacific-North America (PNA) pattern, and the East Pacific (EP) dipole (a dipole pattern in geopotential heights over North America’s Pacific coast). Combinations of these drivers can reinforce or cancel to produce various high- or low-impact scenarios for winter precipitation trends in various regions of the United States. For example, the most extreme winter precipitation trends in the southwestern U.S. result from opposite trends in ENSO and EP, whereas the wettest winter precipitation trends in the midwestern U.S. result from a combination of strong global warming and a negative PNA trend.


2020 ◽  
pp. 228-244
Author(s):  
Kyle M. Lascurettes

Chapter 9 (“The Future of Order”) reviews the empirical findings of the book and discusses their implications for the study of international relations. It then leverages these findings to address the two most important questions for international order in the twenty-first century: In the near term, what changes to the existing liberal order will the United States advocate as it continues to decline in relative power? And in the long term, what is its projected hegemonic successor, China, likely to do with the existing order when it finds itself in a position to fundamentally recast its underlying principles?


2020 ◽  
Author(s):  
Arjen P. Stroeven ◽  
Ramona A.A. Schneider ◽  
Robin Blomdin ◽  
Natacha Gribenski ◽  
Marc W. Caffee ◽  
...  

<p>Paleoglaciological data is a crucial source of information towards insightful paleoclimate reconstructions by providing vital boundary conditions for regional and global climate models. In this context, the Third Pole Environment is considered a key region because it is highly sensitive to global climate change and its many glaciers constitute a diminishing but critical supply of freshwater to downstream communities in SE Asia. Despite its importance, extents of past glaciation on the Tibetan Plateau remain poorly documented or controversial largely because of the lack of well define glacial chronostratigraphies and reconstructions of former glacier extent. This study contributes to a better documentation of the extent and improved resolution of the timing of past glaciations on the southeastern margin of the Tibetan Plateau. We deploy a high-resolution TanDEM-X Digital Elevation Model (12 m resolution) to produce maps of glacial and proglacial fluvial landforms in unprecedented detail. Geomorphological and sedimentological field observations complement the mapping while cosmogenic nuclide exposure dating of quartz samples from boulders on end moraines detail the timing of local glacier expansion. Additionally, samples for optically stimulated luminescence dating were taken from extensive and distinct terraces located in pull-apart basins downstream of the end moraines to determine their formation time. We compare this new dataset with new and published electron spin resonance ages from terraces. Temporal coherence between the different chronometers strengthens the geochronological record while divergence highlights limitations in the applicability of the chronometers to glacial research or in our conceptual understanding of landscape changes in tectonic regions. Results highlight our current understanding of paleoglaciation, landscape development, and paleoclimate on the SE Tibetan Plateau.</p>


2020 ◽  
Vol 4 (3) ◽  
pp. 455-475 ◽  
Author(s):  
Mansour Almazroui ◽  
Fahad Saeed ◽  
Sajjad Saeed ◽  
M. Nazrul Islam ◽  
Muhammad Ismail ◽  
...  

Abstract We analyze data of 27 global climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), and examine projected changes in temperature and precipitation over the African continent during the twenty-first century. The temperature and precipitation changes are computed for two future time slices, 2030–2059 (near term) and 2070–2099 (long term), relative to the present climate (1981–2010), for the entire African continent and its eight subregions. The CMIP6 multi-model ensemble projected a continuous and significant increase in the mean annual temperature over all of Africa and its eight subregions during the twenty-first century. The mean annual temperature over Africa for the near (long)-term period is projected to increase by 1.2 °C (1.4 °C), 1.5 °C (2.3 °C), and 1.8 °C (4.4 °C) under the Shared Socioeconomic Pathways (SSPs) for weak, moderate, and strong forcing, referenced as SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The future warming is not uniform over Africa and varies regionally. By the end of the twenty-first century, the largest rise in mean annual temperature (5.6 °C) is projected over the Sahara, while the smallest rise (3.5 °C) is over Central East Africa, under the strong forcing SSP5-8.5 scenario. The projected boreal winter and summer temperature patterns for the twenty-first century show spatial distributions similar to the annual patterns. Uncertainty associated with projected temperature over Africa and its eight subregions increases with time and reaches a maximum by the end of the twenty-first century. On the other hand, the precipitation projections over Africa during the twenty-first century show large spatial variability and seasonal dependency. The northern and southern parts of Africa show a reduction in precipitation, while the central parts of Africa show an increase, in future climates under the three reference scenarios. For the near (long)-term periods, the area-averaged precipitation over Africa is projected to increase by 6.2 (4.8)%, 6.8 (8.5)%, and 9.5 (15.2)% under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The median warming simulated by the CMIP6 model ensemble remains higher than the CMIP5 ensemble over most of Africa, reaching as high as 2.5 °C over some regions, while precipitation shows a mixed spatial pattern.


2015 ◽  
Vol 28 (24) ◽  
pp. 9918-9940 ◽  
Author(s):  
Angélique Melet ◽  
Benoit Meyssignac

Abstract The ocean stores more than 90% of the energy excess associated with anthropogenic climate change. The resulting ocean warming and thermal expansion are leading contributors to global mean sea level (GMSL) rise. Confidence in projections of GMSL rise therefore depends on the ability of climate models to reproduce global mean thermosteric sea level (GMTSL) rise over the twentieth century. This study first compares the GMTSL of the climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to observations over 1961–2005. Although the model ensemble mean is within the uncertainty of observations, the model ensemble exhibits a large spread. The authors then aim to explain the spread in CMIP5 climate model GMTSL over the twentieth and twenty-first centuries. It is shown that the climate models’ GMTSL rise depends linearly on the time-integrated radiative forcing F (under continuously increasing radiative forcing). The constant of proportionality μ expresses the transient thermosteric sea level response of the climate system, and it depends on the fraction of excess heat stored in the ocean, the expansion efficiency of heat, the climate feedback parameter, and the ocean heat uptake efficiency. The across-model spread in μ explains most (>70%) of the across-model spread in GMTSL rise over the twentieth and twenty-first centuries, while the across-model spread in time-integrated F explains the rest. The time-integrated F explains less variance in the across-model GMTSL rise in twenty-first-century than in twentieth-century simulations, as the spread in F is reduced over the twenty-first century because the anthropogenic aerosol forcing, which is a large source of uncertainty in F, becomes relatively smaller.


2016 ◽  
Vol 37 (2) ◽  
pp. 657-671 ◽  
Author(s):  
Jianwei Xu ◽  
Yanhong Gao ◽  
Deliang Chen ◽  
Linhong Xiao ◽  
Tinghai Ou

2018 ◽  
Vol 31 (20) ◽  
pp. 8281-8303 ◽  
Author(s):  
Kieran Bhatia ◽  
Gabriel Vecchi ◽  
Hiroyuki Murakami ◽  
Seth Underwood ◽  
James Kossin

As one of the first global coupled climate models to simulate and predict category 4 and 5 (Saffir–Simpson scale) tropical cyclones (TCs) and their interannual variations, the High-Resolution Forecast-Oriented Low Ocean Resolution (HiFLOR) model at the Geophysical Fluid Dynamics Laboratory (GFDL) represents a novel source of insight on how the entire TC intensification distribution could be transformed because of climate change. In this study, three 70-yr HiFLOR experiments are performed to identify the effects of climate change on TC intensity and intensification. For each of the experiments, sea surface temperature (SST) is nudged to different climatological targets and atmospheric radiative forcing is specified, allowing us to explore the sensitivity of TCs to these conditions. First, a control experiment, which uses prescribed climatological ocean and radiative forcing based on observations during the years 1986–2005, is compared to two observational records and evaluated for its ability to capture the mean TC behavior during these years. The simulated intensification distributions as well as the percentage of TCs that become major hurricanes show similarities with observations. The control experiment is then compared to two twenty-first-century experiments, in which the climatological SSTs from the control experiment are perturbed by multimodel projected SST anomalies and atmospheric radiative forcing from either 2016–35 or 2081–2100 (RCP4.5 scenario). The frequency, intensity, and intensification distribution of TCs all shift to higher values as the twenty-first century progresses. HiFLOR’s unique response to climate change and fidelity in simulating the present climate lays the groundwork for future studies involving models of this type.


2015 ◽  
Vol 28 (12) ◽  
pp. 4618-4636 ◽  
Author(s):  
Fengpeng Sun ◽  
Daniel B. Walton ◽  
Alex Hall

Abstract Using the hybrid downscaling technique developed in part I of this study, temperature changes relative to a baseline period (1981–2000) in the greater Los Angeles region are downscaled for two future time slices: midcentury (2041–60) and end of century (2081–2100). Two representative concentration pathways (RCPs) are considered, corresponding to greenhouse gas emission reductions over coming decades (RCP2.6) and to continued twenty-first-century emissions increases (RCP8.5). All available global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are downscaled to provide likelihood and uncertainty estimates. By the end of century under RCP8.5, a distinctly new regional climate state emerges: average temperatures will almost certainly be outside the interannual variability range seen in the baseline. Except for the highest elevations and a narrow swath very near the coast, land locations will likely see 60–90 additional extremely hot days per year, effectively adding a new season of extreme heat. In mountainous areas, a majority of the many baseline days with freezing nighttime temperatures will most likely not occur. According to a similarity metric that measures daily temperature variability and the climate change signal, the RCP8.5 end-of-century climate will most likely be only about 50% similar to the baseline. For midcentury under RCP2.6 and RCP8.5 and end of century under RCP2.6, these same measures also indicate a detectable though less significant climatic shift. Therefore, while measures reducing global emissions would not prevent climate change at this regional scale in the coming decades, their impact would be dramatic by the end of the twenty-first century.


Sign in / Sign up

Export Citation Format

Share Document