Interannual Variation of the Spring and Summer Precipitation over the Three River Source Region in China and the Associated Regimes

2018 ◽  
Vol 31 (18) ◽  
pp. 7441-7457 ◽  
Author(s):  
Bo Sun ◽  
Huijun Wang

This study analyzes the interannual and interdecadal variability of spring and summer precipitation over the Three River Source (TRS) region in China using four datasets. A general consistency is revealed among the four datasets with regard to the interannual and interdecadal variability of TRS precipitation during 1979–2015, demonstrating a confidence of the four datasets in representing the precipitation variability over the TRS region. The TRS spring and summer precipitation shows distinct interannual and interdecadal variability, with an overall increasing trend in the spring precipitation and an interdecadal oscillation in the summer precipitation. The regimes associated with the interannual variability of TRS spring and summer precipitation are further investigated. The interannual variability of TRS spring precipitation is essentially modulated by an anomalous easterly water vapor transport (WVT) branch associated with the leading mode of Eurasian spring circulation. El Niño–Southern Oscillation (ENSO) may affect the interannual variability of TRS spring precipitation by causing southerly WVT anomalies toward the TRS region. The interannual variability of TRS summer precipitation is essentially modulated by an anomalous southwesterly WVT branch over the TRS region, which is mainly associated with a Eurasian wave train connected with the summer North Atlantic Oscillation. A strong East Asian summer monsoon and an El Niño–decaying summer may also contribute to the southwesterly WVT anomalies over the TRS region.

2020 ◽  
Vol 16 (1) ◽  
pp. 211-225 ◽  
Author(s):  
Haiwei Zhang ◽  
Hai Cheng ◽  
Yanjun Cai ◽  
Christoph Spötl ◽  
Ashish Sinha ◽  
...  

Abstract. This study examines the seasonality of precipitation amount and δ18O over the monsoon region of China (MRC). We found that the precipitation amount associated with the East Asian summer monsoon (EASM) in the spring persistent rain (SPR) region is equivalent to that of the nonsummer monsoon (NSM). The latter contributes ∼50 % to amount-weighted annual δ18O values, in contrast with other areas in the MRC, where the δ18O of annual precipitation is dominated by EASM precipitation. Interannual relationships between the El Niño–Southern Oscillation (ENSO) index, simulated δ18O data from IsoGSM, and seasonal precipitation amount in the SPR region were also examined. We found that on interannual timescales, the seasonality of precipitation amount (EASM ∕ NSM ratio) was modulated by ENSO and primarily influences the variability of amount-weighted annual precipitation δ18O values in the SPR region, although integrated regional convection and moisture source and transport distance may also play subordinate roles. During El Niño (La Niña) phases, less (more) EASM and more (less) NSM precipitation leading to lower (higher) EASM ∕ NSM precipitation amount ratios results in higher (lower) amount-weighted annual precipitation δ18O values and, consequently, in higher (lower) speleothem δ18O values. Characterizing spatial differences in seasonal precipitation is, therefore, key to correctly interpreting speleothem δ18O records from the MRC.


2019 ◽  
Author(s):  
Matthew J. Rowlinson ◽  
Alexandru Rap ◽  
Stephen R. Arnold ◽  
Richard J. Pope ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. The growth rate of global methane (CH4) concentrations has a strong interannual variability which is believed to be driven largely by fluctuations in CH4 emissions from wetlands and wildfires, as well as changes to the atmospheric sink. The El Niño Southern Oscillation (ENSO) is known to influence fire occurrence, wetland emission and atmospheric transport, but there are still important uncertainties associated with the exact mechanism and magnitude of this influence. Here we use a modelling approach to investigate how fires and meteorology control the interannual variability of global carbon monoxide (CO), CH4 and ozone (O3) concentrations, particularly during large El Niño events. Using a three-dimensional chemical transport model (TOMCAT) coupled to a sophisticated aerosol microphysics scheme (GLOMAP) we simulate changes to CO, hydroxyl radical (OH) and O3 for the period 1997–2014. We then use an offline radiative transfer model to quantify the impact of changes to atmospheric composition as a result of specific drivers. During the El Niño event of 1997–1998, there were increased emissions from biomass burning globally. As a result, global CO concentrations increased by more than 40 %. This resulted in decreased global mass-weighted tropospheric OH concentrations of up to 9 % and a resulting 4 % increase in the CH4 atmospheric lifetime. The change in CH4 lifetime led to a 7.5 ppb yr−1 increase in global mean CH4 growth rate in 1998. Therefore biomass burning emission of CO could account for 72 % of the total effect of fire emissions on CH4 growth rate in 1998. Our simulations indicate variations in fire emissions and meteorology associated with El Niño have opposing impacts on tropospheric O3 burden. El Niño-related atmospheric transport changes decrease global tropospheric O3 concentrations leading to a −0.03 Wm−2 change in O3 radiative effect (RE). However, enhanced fire emission of precursors such as nitrous oxides (NOx) and CO increase O3 RE by 0.03 Wm−2. While globally the two mechanisms nearly cancel out, causing only a small change in global mean O3 RE, the regional changes are large   up to −0.33 Wm−2 with potentially important consequences for atmospheric heating and dynamics.


2018 ◽  
Vol 31 (5) ◽  
pp. 1771-1787 ◽  
Author(s):  
Jau-Ming Chen ◽  
Pei-Hua Tan ◽  
Liang Wu ◽  
Hui-Shan Chen ◽  
Jin-Shuen Liu ◽  
...  

This study examines the interannual variability of summer tropical cyclone (TC) rainfall (TCR) in the western North Pacific (WNP) depicted by the Climate Forecast System Reanalysis (CFSR). This interannual variability exhibits a maximum region near Taiwan (19°–28°N, 120°–128°E). Significantly increased TCR in this region is modulated by El Niño–Southern Oscillation (ENSO)-related large-scale processes. They feature elongated sea surface temperature warming in the tropical eastern Pacific and a southeastward-intensified monsoon trough. Increased TC movements are facilitated by interannual southerly/southeasterly flows in the northeastern periphery of the intensified monsoon trough to move from the tropical WNP toward the region near Taiwan, resulting in increased TCR. The coherent dynamic relations between interannual variability of summer TCR and large-scale environmental processes justify CFSR as being able to reasonably depict interannual characteristics of summer TCR in the WNP. For intraseasonal oscillation (ISO) modulations, TCs tend to cluster around the center of a 10–24-day cyclonic anomaly and follow its northwestward propagation from the tropical WNP toward the region near Taiwan. The above TC movements are subject to favorable background conditions provided by a northwest–southeasterly extending 30–60-day cyclonic anomaly. Summer TCR tends to increase (decrease) during El Niño (La Niña) years and strong (weak) ISO years. By comparing composite TCR anomalies and correlations with TCR variability, it is found that ENSO is more influential than ISO in modulating the interannual variability of summer TCR in the WNP.


2012 ◽  
Vol 25 (18) ◽  
pp. 6318-6329 ◽  
Author(s):  
Wenju Cai ◽  
Peter van Rensch ◽  
Tim Cowan ◽  
Harry H. Hendon

Abstract Recent research has shown that the climatic impact from El Niño–Southern Oscillation (ENSO) on middle latitudes west of the western Pacific (e.g., southeast Australia) during austral spring (September–November) is conducted via the tropical Indian Ocean (TIO). However, it is not clear whether this impact pathway is symmetric about the positive and negative phases of ENSO and the Indian Ocean dipole (IOD). It is shown that a strong asymmetry does exist. For ENSO, only the impact from El Niño is conducted through the TIO pathway; the impact from La Niña is delivered through the Pacific–South America pattern. For the IOD, a greater convection anomaly and wave train response occurs during positive IOD (pIOD) events than during negative IOD (nIOD) events. This “impact asymmetry” is consistent with the positive skewness of the IOD, principally due to a negative skewness of sea surface temperature (SST) anomalies in the east IOD (IODE) pole. In the IODE region, convection anomalies are more sensitive to a per unit change of cold SST anomalies than to the same unit change of warm SST anomalies. This study shows that the IOD skewness occurs despite the greater damping, rather than due to a breakdown of this damping as suggested by previous studies. This IOD impact asymmetry provides an explanation for much of the reduction in spring rainfall over southeast Australia during the 2000s. Key to this rainfall reduction is the increased occurrences of pIOD events, more so than the lack of nIOD events.


Sign in / Sign up

Export Citation Format

Share Document