scholarly journals Simulating the Role of Subtropical Stratocumulus Clouds in Driving Pacific Climate Variability

2014 ◽  
Vol 27 (13) ◽  
pp. 5119-5131 ◽  
Author(s):  
Katinka Bellomo ◽  
Amy Clement ◽  
Thorsten Mauritsen ◽  
Gaby Rädel ◽  
Bjorn Stevens

This study examines the influence of the northeast and southeast Pacific subtropical stratocumulus cloud regions on the modes of Pacific climate variability simulated by an atmospheric general circulation model (ECHAM6) coupled to a slab ocean. The sensitivity of cloud liquid water to underlying SST is changed in the radiation module of the atmospheric model to increase the strength of positive low-cloud feedback in the two regions. Enhanced low-cloud feedback increases the persistence and variance of the leading modes of climate variability at decadal and longer time scales. Additional integrations show that the southeast Pacific influences climate variability in the equatorial ENSO region, whereas the effects of the northeast Pacific remain confined to the North Pacific. The results herein suggest that a positive feedback among SST, cloud cover, and large-scale atmospheric circulation can explain decadal climate variability in the Pacific Ocean. In particular, cloud feedbacks over the subtropical stratocumulus regions set the time scale of climate variability. A proper representation of low-level cloud feedbacks in the subtropical stratocumulus regions could therefore improve the simulation of Pacific climate variability.

2016 ◽  
Vol 29 (17) ◽  
pp. 6259-6275 ◽  
Author(s):  
Youichi Kamae ◽  
Hideo Shiogama ◽  
Masahiro Watanabe ◽  
Tomoo Ogura ◽  
Tokuta Yokohata ◽  
...  

Abstract Factors and possible constraints to extremely large spread of effective climate sensitivity (ECS) ranging about 2.1–10.4 K are examined by using a large-member ensemble of quadrupling CO2 experiments with an atmospheric general circulation model (AGCM). The ensemble, called the multiparameter multiphysics ensemble (MPMPE), consists of both parametric and structural uncertainties in parameterizations of cloud, cumulus convection, and turbulence based on two different versions of AGCM. The sum of the low- and middle-cloud shortwave feedback explains most of the ECS spread among the MPMPE members. For about half of the perturbed physics ensembles (PPEs) in the MPMPE, variation in lower-tropospheric mixing intensity (LTMI) corresponds well with the ECS variation, whereas it does not for the other half. In the latter PPEs, large spread in optically thick middle-cloud feedback over the equatorial ocean substantially affects the ECS, disrupting the LTMI–ECS relationship. Although observed LTMI can constrain uncertainty in the low-cloud feedback, total uncertainty of the ECS among the MPMPE cannot solely be explained by the LTMI, suggesting a limitation of single emergent constraint for the ECS.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 143-159 ◽  
Author(s):  
S. Cailleau ◽  
J. Chanut ◽  
J.-M. Lellouche ◽  
B. Levier ◽  
C. Maraldi ◽  
...  

Abstract. The regional ocean operational system remains a key element in downscaling from large scale (global or basin scale) systems to coastal ones. It enables the transition between systems in which the resolution and the resolved physics are quite different. Indeed, coastal applications need a system to predict local high frequency events (inferior to the day) such as storm surges, while deep sea applications need a system to predict large scale lower frequency ocean features. In the framework of the ECOOP project, a regional system for the Iberia-Biscay-Ireland area has been upgraded from an existing V0 version to a V2. This paper focuses on the improvements from the V1 system, for which the physics are close to a large scale basin system, to the V2 for which the physics are more adapted to shelf and coastal issues. Strong developments such as higher regional physics resolution in the NEMO Ocean General Circulation Model for tides, non linear free surface and adapted vertical mixing schemes among others have been implemented in the V2 version. Thus, regional thermal fronts due to tidal mixing now appear in the latest version solution and are quite well positioned. Moreover, simulation of the stratification in shelf areas is also improved in the V2.


2007 ◽  
Vol 4 (5) ◽  
pp. 3413-3440 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to most impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km² per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit some skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


2011 ◽  
Vol 11 (2) ◽  
pp. 3777-3811
Author(s):  
F. Sun ◽  
A. Hall ◽  
X. Qu

Abstract. In this study, we examine observed marine low cloud variability in the southeast Pacific and its association with lower-tropospheric stability (LTS) across a spectrum of timescales. On both daily and interannual timescales, LTS and low cloud amount are very well correlated in austral summer (DJF). Meanwhile in winter (JJA), when ambient LTS increases, the LTS-low cloud relationship disintegrates. The DJF LTS-low cloud relationship also weakens in years with unusually large ambient LTS values. These are generally strong El Niño years, in which DJF LTS values are comparable to those typically found in JJA. Thus the LTS-low cloud relationship is strongly modulated by the seasonal cycle and the ENSO phenomenon. We also investigate the origin of LTS anomalies closely associated with low cloud variability during austral summer. We find that the ocean and atmosphere are independently involved in generating anomalies in LTS and hence variability in the southeast Pacific low cloud deck. This highlights the coupled nature of the climate system in this region, and raises the possibility of cloud feedbacks related to LTS. We conclude by addressing the implications of the observed LTS-low cloud relationship in the southeast Pacific for low cloud feedbacks in anthropogenic climate change.


2006 ◽  
Vol 24 (8) ◽  
pp. 2075-2089 ◽  
Author(s):  
A. Chakraborty ◽  
R. S. Nanjundiah ◽  
J. Srinivasan

Abstract. A theory is proposed to determine the onset of the Indian Summer Monsoon (ISM) in an Atmospheric General Circulation Model (AGCM). The onset of ISM is delayed substantially in the absence of global orography. The impact of orography over different parts of the Earth on the onset of ISM has also been investigated using five additional perturbed simulations. The large difference in the date of onset of ISM in these simulations has been explained by a new theory based on the Surface Moist Static Energy (SMSE) and vertical velocity at the mid-troposphere. It is found that onset occurs only after SMSE crosses a threshold value and the large-scale vertical motion in the middle troposphere becomes upward. This study shows that both dynamics and thermodynamics play profound roles in the onset of the monsoon.


Tellus ◽  
1976 ◽  
Vol 28 (3) ◽  
pp. 228-242 ◽  
Author(s):  
Rick Salmon ◽  
Myrl C. Hendershott

2020 ◽  
Vol 33 (16) ◽  
pp. 6989-7010 ◽  
Author(s):  
Lingfeng Tao ◽  
Xiu-Qun Yang ◽  
Jiabei Fang ◽  
Xuguang Sun

AbstractObserved wintertime atmospheric anomalies over the central North Pacific associated with the Pacific decadal oscillation (PDO) are characterized by a cold/trough (warm/ridge) structure, that is, an anomalous equivalent barotropic low (high) over a negative (positive) sea surface temperature (SST) anomaly. While the midlatitude atmosphere has its own strong internal variabilities, to what degree local SST anomalies can affect the midlatitude atmospheric variability remains unclear. To identify such an impact, three atmospheric general circulation model experiments each having a 63-yr-long simulation are conducted. The control run forced by observed global SST reproduces well the observed PDO-related cold/trough (warm/ridge) structure. However, the removal of the midlatitude North Pacific SST variabilities in the first sensitivity run reduces the atmospheric response by roughly one-third. In the second sensitivity run in which large-scale North Pacific SST variabilities are mostly kept, but their frontal-scale meridional gradients are sharply smoothed, simulated PDO-related cold/trough (warm/ridge) anomalies are also reduced by nearly one-third. Dynamical diagnoses exhibit that such a reduction is primarily due to the weakened transient eddy activities that are induced by weakened meridional SST gradient anomalies, in which the transient eddy vorticity forcing plays a crucial role. Therefore, it is suggested that midlatitude North Pacific SST anomalies make a considerable (approximately one-third) contribution to the observed PDO-related cold/trough (warm/ridge) anomalies in which the frontal-scale meridional SST gradient (oceanic front) is a key player, although most of those atmospheric anomalies are determined by the SST variabilities outside of the midlatitude North Pacific.


2019 ◽  
Vol 12 (8) ◽  
pp. 3745-3758 ◽  
Author(s):  
François Massonnet ◽  
Antoine Barthélemy ◽  
Koffi Worou ◽  
Thierry Fichefet ◽  
Martin Vancoppenolle ◽  
...  

Abstract. The ice thickness distribution (ITD) is one of the core constituents of modern sea ice models. The ITD accounts for the unresolved spatial variability of sea ice thickness within each model grid cell. While there is a general consensus on the added physical realism brought by the ITD, how to discretize it remains an open question. Here, we use the ocean–sea ice general circulation model, Nucleus for European Modelling of the Ocean (NEMO) version 3.6 and Louvain-la-Neuve sea Ice Model (LIM) version 3 (NEMO3.6-LIM3), forced by atmospheric reanalyses to test how the ITD discretization (number of ice thickness categories, positions of the category boundaries) impacts the simulated mean Arctic and Antarctic sea ice states. We find that winter ice volumes in both hemispheres increase with the number of categories and attribute that increase to a net enhancement of basal ice growth rates. The range of simulated mean winter volumes in the various experiments amounts to ∼30 % and ∼10 % of the reference values (run with five categories) in the Arctic and Antarctic, respectively. This suggests that the way the ITD is discretized has a significant influence on the model mean state, all other things being equal. We also find that the existence of a thick category with lower bounds at ∼4 and ∼2 m for the Arctic and Antarctic, respectively, is a prerequisite for allowing the storage of deformed ice and therefore for fostering thermodynamic growth in thinner categories. Our analysis finally suggests that increasing the resolution of the ITD without changing the lower limit of the upper category results in small but not negligible variations of ice volume and extent. Our study proposes for the first time a bi-polar process-based explanation of the origin of mean sea ice state changes when the ITD discretization is modified. The sensitivity experiments conducted in this study, based on one model, emphasize that the choice of category positions, especially of thickest categories, has a primary influence on the simulated mean sea ice states while the number of categories and resolution have only a secondary influence. It is also found that the current default discretization of the NEMO3.6-LIM3 model is sufficient for large-scale present-day climate applications. In all cases, the role of the ITD discretization on the simulated mean sea ice state has to be appreciated relative to other influences (parameter uncertainty, forcing uncertainty, internal climate variability).


Sign in / Sign up

Export Citation Format

Share Document