scholarly journals Increasing Daily Precipitation Intensity Associated with Warmer Air Temperatures over Northern Eurasia

2016 ◽  
Vol 29 (2) ◽  
pp. 623-636 ◽  
Author(s):  
Hengchun Ye ◽  
Eric J. Fetzer ◽  
Ali Behrangi ◽  
Sun Wong ◽  
Bjorn H. Lambrigtsen ◽  
...  

Abstract This study uses 45 years of observational records from 517 historical surface weather stations over northern Eurasia to examine changing precipitation characteristics associated with increasing air temperatures. Results suggest that warming air temperatures over northern Eurasia have been accompanied by higher precipitation intensity but lower frequency and little change in annual precipitation total. An increase in daily precipitation intensity of around 1%–3% per each degree of air temperature increase is found for all seasons as long as a station’s seasonal mean air temperature is below about 15°–16°C. This threshold temperature may be location dependent. At temperatures above this threshold, precipitation intensity switches to decreasing with increasing air temperature, possibly related to decreasing water vapor associated with extreme high temperatures. Furthermore, the major atmospheric circulation of the Arctic Oscillation, Scandinavian pattern, east Atlantic–western Eurasian pattern, and polar–Eurasian pattern also have significant influences on precipitation intensity in winter, spring, and summer over certain areas of northern Eurasia.

2008 ◽  
Vol 21 (22) ◽  
pp. 5807-5819 ◽  
Author(s):  
Hengchun Ye

Abstract Potential benefits or disadvantages of increasing precipitation in high-latitude regions under a warming climate are dependent on how and in what form the precipitation occurs. Precipitation frequency and type are equally as important as quantity and intensity to understanding the seasonality of hydrological cycles and the health of the ecosystem in high-latitude regions. This study uses daily historical synoptic observation records during 1936–90 over the former USSR to reveal associations between the frequency of precipitation types (rainfall, snowfall, mixed solid and liquid, and wet days of all types) and surface air temperatures to determine potential changes in precipitation characteristics under a warming climate. Results from this particular study show that the frequency of precipitation of all types generally increases with air temperature during winter. However, both solid and liquid precipitation days predominantly decrease with air temperature during spring with a reduction in snowfall days being most significant. During autumn, snowfall days decrease while rainfall days increase resulting in overall decreases in wet days as air temperature increases. The data also reveal that, as snowfall days increase in relationship to increasing air temperatures, this increase may level out or even decrease as mean surface air temperature exceeds −8°C in winter. In spring and autumn, increasing rainfall days switch to decreasing when the mean surface air temperature goes above 6°C. The conclusion of this study is that changes in the frequency of precipitation types are highly dependent on the location’s air temperature and that threshold temperatures exist beyond which changes in an opposite direction occur.


2017 ◽  
Vol 30 (22) ◽  
pp. 8913-8927 ◽  
Author(s):  
Svenja H. E. Kohnemann ◽  
Günther Heinemann ◽  
David H. Bromwich ◽  
Oliver Gutjahr

The regional climate model COSMO in Climate Limited-Area Mode (COSMO-CLM or CCLM) is used with a high resolution of 15 km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 20°C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice. Also, the 30-km version of the Arctic System Reanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 1°C for the ocean and sea ice area. Thus, ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.5°C yr−1 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 70°N; for CCLM the warming amounts to an average of almost 5°C for 2002/03–2011/12.


2021 ◽  
pp. 5-16
Author(s):  
V. N. Kryjov ◽  

The 2019/2020 wintertime (December–March) anomalies of sea level pressure, temperature, and precipitation are analyzed. The contribution of the 40-year linear trend in these parameters associated with global climate change and of the interannual variability associated with the Arctic Oscillation (AO) is assessed. In the 2019/2020 winter, extreme zonal circulation was observed. The mean wintertime AO index was 2.20, which ranked two for the whole observation period (started in the early 20th century) and was outperformed only by the wintertime index of 1988/1989. It is shown that the main contribution to the 2019/2020 wintertime anomalies was provided by the AO. A noticeable contribution of the trend was observed only in the Arctic. Extreme anomalies over Northern Eurasia were mainly associated with the AO rather than the trend. However, the AO-related anomalies, particularly air temperature anomalies, were developing against the background of the trend-induced increased mean level.


2015 ◽  
Vol 28 (10) ◽  
pp. 4015-4026 ◽  
Author(s):  
Jinqing Zuo ◽  
Hong-Li Ren ◽  
Weijing Li

Abstract In the boreal winter, the Arctic Oscillation (AO) evidently acts to influence surface air temperature (SAT) anomalies in China. This study reveals a large intraseasonal variation in the relationship between the winter AO and southern China SAT anomalies. Specifically, a weak in-phase relationship occurs in December, but a significant out-of-phase relationship occurs in January and February. The authors show that the linkage between the AO and southern China SAT anomalies strongly depends on the AO-associated changes in the Middle East jet stream (MEJS) and that such an AO–MEJS relationship is characterized by a significant difference between early and middle-to-late winter. In middle-to-late winter, the Azores center of high pressure anomalies in the positive AO phase usually extends eastward and yields a significantly anomalous upper-level convergence over the Mediterranean Sea, which can excite a Rossby wave train spanning the Arabian Sea and intensify the MEJS. In early winter, however, the Azores center of the AO is apparently shifted westward and is mainly confined to the Atlantic Ocean; in this case, the associated change in the MEJS is relatively weak. Both observational diagnoses and experiments based on a linearized barotropic model suggest that the MEJS is closely linked to the AO only when the latter generates considerable upper-level convergence anomalies over the Mediterranean Sea. Therefore, the different impacts of the AO on the MEJS and the southern China SAT anomalies between early and middle-to-late winter are primarily attributed to the large intraseasonal zonal migrations of the Azores center of the AO.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Masoud Irannezhad

This study analyses the first and last days of snowmelt events and the number of days (duration) between those throughout a water year (September-August). The snowmelt duration (SD) as well as its first (SFD) and last (SLD) days were estimated using daily precipitation and temperature measurements at the Kaisaniemi meteorological station in southern Finland during 1909-2008 as input datasets to a temperature-index snowmelt model. As snowmelt is a sensitive hydrological variable to temperature, this study also evaluated historical variations and trends in November-May (SDt), November-January (SFDt), and March-May (SLDt) temperatures corresponding to SD, SFD, and SLD at Kaisaniemi. The trends in all these parameters as well as their correlations with the well-known climate teleconnections over Finland were investigated. Long-term average values indicated the longest SD was about 131 days between 15 December and 25 April at Kaisaniemi. The SD significantly (p<0.05) shortened by 0.37 (days/year) at Kaisaniemi during 1909-2008 mainly due to the earlier (0.32 days/year) SLD. Such trends in SD and SLD were principally associated with century-long significant warming trends (0.02 °C/year) in both SDt and SLDt. The Arctic Oscillation (AO) was the most influential climate teleconnection for historical variations in SD, SLD, SDt, SFDt, and SLDt at Kaisaniemi.


Sign in / Sign up

Export Citation Format

Share Document