scholarly journals The Madden–Julian Oscillation and Boreal Winter Forecast Skill: An Analysis of NCEP CFSv2 Reforecasts

2015 ◽  
Vol 28 (15) ◽  
pp. 6297-6307 ◽  
Author(s):  
Charles Jones ◽  
Abheera Hazra ◽  
Leila M. V. Carvalho

Abstract The Madden–Julian oscillation (MJO) is the main mode of tropical intraseasonal variations and bridges weather and climate. Because the MJO has a slow eastward propagation and longer time scale relative to synoptic variability, significant interest exists in exploring the predictability of the MJO and its influence on extended-range weather forecasts (i.e., 2–4-week lead times). This study investigates the impact of the MJO on the forecast skill in Northern Hemisphere extratropics during boreal winter. Several 45-day forecasts of geopotential height (500 hPa) from NCEP Climate Forecast System version 2 (CFSv2) reforecasts are used (1 November–31 March 1999–2010). The variability of the MJO expressed as different amplitudes, durations, and recurrence (i.e., primary and successive events) and their influence on forecast skill is analyzed and compared against inactive periods (i.e., null cases). In general, forecast skill during enhanced MJO convection over the western Pacific is systematically higher than in inactive days. When the enhanced MJO convection is over the Maritime Continent, forecasts are lower than in null cases, suggesting potential model deficiencies in accurately forecasting the eastward propagation of the MJO over that region and the associated extratropical response. In contrast, forecasts are more skillful than null cases when the enhanced convection is over the western Pacific and during long, intense, and successive MJO events. These results underscore the importance of the MJO as a potential source of predictability on 2–4-week lead times.

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1049
Author(s):  
Xin Li ◽  
Ming Yin ◽  
Xiong Chen ◽  
Minghao Yang ◽  
Fei Xia ◽  
...  

Based on the observation and reanalysis data, the relationship between the Madden–Julian Oscillation (MJO) over the Maritime Continent (MC) and the tropical Pacific–Indian Ocean associated mode was analyzed. The results showed that the MJO over the MC region (95°–150° E, 10° S–10° N) (referred to as the MC–MJO) possesses prominent interannual and interdecadal variations and seasonally “phase-locked” features. MC–MJO is strongest in the boreal winter and weakest in the boreal summer. Winter MC–MJO kinetic energy variation has significant relationships with the El Niño–Southern Oscillation (ENSO) in winter and the Indian Ocean Dipole (IOD) in autumn, but it correlates better with the tropical Pacific–Indian Ocean associated mode (PIOAM). The correlation coefficient between the winter MC–MJO kinetic energy index and the autumn PIOAM index is as high as −0.5. This means that when the positive (negative) autumn PIOAM anomaly strengthens, the MJO kinetic energy over the winter MC region weakens (strengthens). However, the correlation between the MC–MJO convection and PIOAM in winter is significantly weaker. The propagation of MJO over the Maritime Continent differs significantly in the contrast phases of PIOAM. During the positive phase of the PIOAM, the eastward propagation of the winter MJO kinetic energy always fails to move across the MC region and cannot enter the western Pacific. However, during the negative phase of the PIOAM, the anomalies of MJO kinetic energy over the MC is not significantly weakened, and MJO can propagate farther eastward and enter the western Pacific. It should be noted that MJO convection is more likely to extend to the western Pacific in the positive phases of PIOAM than in the negative phases. This is significant different with the propagation of the MJO kinetic energy.


2009 ◽  
Vol 22 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Lina Zhang ◽  
Bizheng Wang ◽  
Qingcun Zeng

Abstract The impact of the Madden–Julian oscillation (MJO) on summer rainfall in Southeast China is investigated using the Real-time Multivariate MJO (RMM) index and the observational rainfall data. A marked transition of rainfall patterns from being enhanced to being suppressed is found in Southeast China (east of 105°E and south of 35°N) on intraseasonal time scales as the MJO convective center moves from the Indian Ocean to the western Pacific Ocean. The maximum positive and negative anomalies of regional mean rainfall are in excess of 10% relative to the climatological regional mean. Such different rainfall regimes are associated with the corresponding changes in physical fields such as the western Pacific subtropical high (WPSH), moisture, and vertical motions. When the MJO is mainly over the Indian Ocean, the WPSH shifts farther westward, and the moisture and upward motions in Southeast China are increased. In contrast, when the MJO enters the western Pacific, the WPSH retreats eastward, and the moisture and upward motions in Southeast China are decreased. It is suggested that the MJO may influence summer rainfall in Southeast China through remote and local dynamical mechanisms, which correspond to the rainfall enhancement and suppression, respectively. The remote role is the energy propagation of the Rossby wave forced by the MJO-related heating over the Indian Ocean through the low-level westerly waveguide from the tropical Indian Ocean to Southeast China. The local role is the northward shift of the upward branch of the anomalous meridional circulation when the MJO is over the western Pacific, which causes eastward retreat of the WPSH and suppressed moisture transport toward Southeast China.


2005 ◽  
Vol 18 (8) ◽  
pp. 1190-1202 ◽  
Author(s):  
D. J. Bernie ◽  
S. J. Woolnough ◽  
J. M. Slingo ◽  
E. Guilyardi

Abstract The intraseasonal variability of SST associated with the passage of the Madden–Julian oscillation (MJO) is well documented; yet coupled model integrations generally underpredict the magnitude of this SST variability. Observations from the Improved Meteorological Instrument (IMET) mooring in the western Pacific during the intensive observing period (IOP) of the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) showed a large diurnal signal in SST that is modulated by the passage of the MJO. In this study, observations from the IOP of the TOGA COARE and a one-dimensional (1D) ocean mixed layer model incorporating the K-Profile Parameterization (KPP) vertical mixing scheme have been used to investigate the rectification of the intraseasonal variability of SST by the diurnal cycle and the implied impact of the absence of a representation of this process on the modeled intraseasonal variability in coupled GCMs. Analysis of the SST observations has shown that the increase of the daily mean SST by the diurnal cycle of SST accounts for about one-third of the magnitude of intraseasonal variability of SST associated with the Madden–Julian oscillation in the western Pacific warm pool. Experiments from the 1D model forced with fluxes at a range of temporal resolutions and with differing vertical resolution of the model have shown that to capture 90% of the diurnal variability of SST, and hence 95% of the intraseasonal variability of SST, requires a 3-h or better temporal resolution of the fluxes and a vertical grid with an upper-layer thickness of the order of 1 m. In addition to the impact of the representation of the diurnal cycle on the intraseasonal variability of SST, the strength of the mixing across the thermocline was found to be enhanced by the proper representation of the nighttime deep mixing in the ocean, implying a possible impact of the diurnal cycle onto the mean climate of the tropical ocean.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 849
Author(s):  
Hyun-Ju Lee ◽  
Emilia-Kyung Jin

The global impact of the tropical Indian Ocean and the Western Pacific (IOWP) is expected to increase in the future because this area has been continuously warming due to global warming; however, the impact of the IOWP forcing on West Antarctica has not been clearly revealed. Recently, ice loss in West Antarctica has been accelerated due to the basal melting of ice shelves. This study examines the characteristics and formation mechanisms of the teleconnection between the IOWP and West Antarctica for each season using the Rossby wave theory. To explicitly understand the role of the background flow in the teleconnection process, we conduct linear baroclinic model (LBM) simulations in which the background flow is initialized differently depending on the season. During JJA/SON, the barotropic Rossby wave generated by the IOWP forcing propagates into the Southern Hemisphere through the climatological northerly wind and arrives in West Antarctica; meanwhile, during DJF/MAM, the wave can hardly penetrate the tropical region. This indicates that during the Austral winter and spring, the IOWP forcing and IOWP-region variabilities such as the Indian Ocean Dipole (IOD) and Indian Ocean Basin (IOB) modes should paid more attention to in order to investigate the ice change in West Antarctica.


2011 ◽  
Vol 139 (2) ◽  
pp. 332-350 ◽  
Author(s):  
Charles Jones ◽  
Jon Gottschalck ◽  
Leila M. V. Carvalho ◽  
Wayne Higgins

Abstract Extreme precipitation events are among the most devastating weather phenomena since they are frequently accompanied by loss of life and property. This study uses reforecasts of the NCEP Climate Forecast System (CFS.v1) to evaluate the skill of nonprobabilistic and probabilistic forecasts of extreme precipitation in the contiguous United States (CONUS) during boreal winter for lead times up to two weeks. The CFS model realistically simulates the spatial patterns of extreme precipitation events over the CONUS, although the magnitudes of the extremes in the model are much larger than in the observations. Heidke skill scores (HSS) for forecasts of extreme precipitation at the 75th and 90th percentiles showed that the CFS model has good skill at week 1 and modest skill at week 2. Forecast skill is usually higher when the Madden–Julian oscillation (MJO) is active and has enhanced convection occurring over the Western Hemisphere, Africa, and/or the western Indian Ocean than in quiescent periods. HSS greater than 0.1 extends to lead times of up to two weeks in these situations. Approximately 10%–30% of the CONUS has HSS greater than 0.1 at lead times of 1–14 days when the MJO is active. Probabilistic forecasts for extreme precipitation events at the 75th percentile show improvements over climatology of 0%–40% at 1-day lead and 0%–5% at 7-day leads. The CFS has better skill in forecasting severe extremes (i.e., events exceeding the 90th percentile) at longer leads than moderate extremes (75th percentile). Improvements over climatology between 10% and 30% at leads of 3 days are observed over several areas across the CONUS—especially in California and in the Midwest.


2016 ◽  
Vol 29 (5) ◽  
pp. 1919-1934 ◽  
Author(s):  
Xiong Chen ◽  
Jian Ling ◽  
Chongyin Li

Abstract Evolution characteristics of the Madden–Julian oscillation (MJO) during the eastern Pacific (EP) and central Pacific (CP) types of El Niño have been investigated. MJO activities are strengthened over the western Pacific during the predeveloping and developing phases of EP El Niño, but suppressed during the mature and decaying phases. In contrast, MJO activities do not show a clear relationship with CP El Niño before their occurrence over the western Pacific, but they increase over the central Pacific during the mature and decaying phases of CP El Niño. Lag correlation analyses further confirm that MJO activities over the western Pacific in boreal spring and early summer are closely related to EP El Niño up to 2–11 months later, but not for CP El Niño. EP El Niño tends to weaken the MJO and lead to a much shorter range of its eastward propagation. Anomalous descending motions over the Maritime Continent and western Pacific related to El Niño can suppress convection and moisture flux convergence there and weaken MJO activities over these regions during the mature phase of both types of El Niño. MJO activities over the western Pacific are much weaker in EP El Niño due to the stronger anomalous descending motions. Furthermore, the MJO propagates more continuously and farther eastward during CP El Niño because of robust moisture convergence over the central Pacific, which provides adequate moisture for the development of MJO convection.


Author(s):  
Qun Zhou ◽  
Lixin Wei

Abstract It is of great practical importance to understand the variability of the South China Sea (SCS) monsoon on intraseasonal time scales, since the anomalous enhancement of the SCS monsoon may exert serious impacts on the safety of offshore engineering and marine transportation. Our composite analysis shows that the SCS surface wind anomalies are considerably varying with the Madden-Julian Oscillation (MJO) eastward propagation. The SCS summer southwest monsoon tends to be stronger (weaker) in phases 5–8 (1–4) of MJO with the largest positive (negative) wind-speed anomalies when the MJO convection is centered in the western Pacific (far western Indian Ocean), suggesting the highest (lowest) probability of the gale over the SCS. The variation of the western Pacific Subtropical High (WPSH), induced by the variations of the local meridional circulation, is shown to play a crucial role in the MJO-SCS summer monsoon linkage. The SCS winter monsoon is also shown to be modulated by the MJO with strengthened (weakened) surface northeasterly in phases 5–6 (1–2). The extra-tropical East Asian trough and East Asian westerly jet associated with the local meridional circulation can well explain the changes of the MJO-SCS winter monsoon relationship. The opposite responses of the wind direction during the same phases of the MJO between summer and winter may be attributed to the discrepancy of meridional circulation related to the wintertime equatorward shift of the MJO convection. The present study indicates that the MJO could be taken into consideration when applying extended-range weather forecast over the SCS as the predictability of the MJO activity is up to 15–20 day currently.


2020 ◽  
Vol 56 (4) ◽  
pp. 2003054
Author(s):  
Chen-Yuan Chiang ◽  
Tauhid Islam ◽  
Caihong Xu ◽  
Thilaka Chinnayah ◽  
Anna Marie Celina Garfin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document